"Though he paid great attention to astronomy, discussed carefully the methods in which it ought to be studied, constructed for the satisfaction of his own mind an elaborate theory of the heavens, and listened eagerly for the news from the stars brought by Galileo's telescope, he appears to have been utterly ignorant of the discoveries which had just been made by Kepler's calculations. Though he complained in 1623 of the want of compendious methods for facilitating arithmetical computations, especially with regard to the doctrine of Series, and fully recognized the importance of them as an aid to physical inquiries—he does not say a word about Napier's Logarithms, which had been published only nine years before and reprinted more than once in the
interval. He complained that no considerable advance had made in geometry beyond Euclid, without taking any notice of what had been done by Archimedes and Apollonius. He saw the importance of determining accurately the specific gravity of different substances, and himself attempted to form a table of them by a rude process of his own, without knowing of the more scientific though still imperfect methods previously employed by Archimedes, Ghetaldus,[[123]] and Porta. He speaks of the εὕρηκα of Archimedes in a manner which implies that he did not clearly apprehend either the nature of the problem to be solved or the principles upon which the solution depended. In reviewing the progress of mechanics, he makes no mention of Archimedes himself, or of Stevinus,[[124]] Galileo, Guldinus,[[125]] or Ghetaldus. He makes no allusion to the theory of equilibrium. He observes that a ball of one pound weight will fall nearly as fast through the air as a ball of two, without alluding to the theory of the acceleration of falling bodies, which had been made known by Galileo more than thirty years before. He proposes an inquiry with regard to the lever—namely, whether in a balance with arms of different length but equal weight the distance from the fulcrum has any effect upon the inclination,—though the theory of the lever was as well understood in his own time as it is now. In making an experiment
of his own to ascertain the cause of the motion of a windmill, he overlooks an obvious circumstance which makes the experiment inconclusive, and an equally obvious variation of the same experiment which would have shown him that his theory was false. He speaks of the poles of the earth as fixed, in a manner which seems to imply that he was not acquainted with the precession of the equinoxes; and in another place, of the north pole being above and the south pole below, as a reason why in our hemisphere the north winds predominate over the south."
Much of this was known before, but such a summary of Bacon's want of knowledge of the science of his own time was never yet collected in one place. We may add, that Bacon seems to have been as ignorant of Wright's[[126]] memorable addition to the resources of navigation as of Napier's addition to the means of calculation. Mathematics was beginning to be the great instrument of exact inquiry: Bacon threw the science aside, from ignorance, just at the time when his enormous sagacity, applied to knowledge, would have made him see the part it was to play. If Newton had taken Bacon for his master, not he, but somebody else, would have been Newton.[[127]]
ON METEOROLOGICAL OBSERVATORIES.
There is an attempt at induction going on, which has yielded little or no fruit, the observations made in the meteorological observatories. This attempt is carried on in a manner which would have caused Bacon to dance for joy; for he lived in times when Chancellors did dance.
Russia, says M. Biot,[[128]] is covered by an army of meteorographs, with generals, high officers, subalterns, and privates with fixed and defined duties of observation. Other countries have also their systematic observations. And what has come of it? Nothing, says M. Biot, and nothing will ever come of it; the veteran mathematician and experimental philosopher declares, as does Mr. Ellis, that no single branch of science has ever been fruitfully explored in this way. There is no special object, he says. Any one would suppose that M. Biot's opinion, given to the French Government upon the proposal to construct meteorological observatories in Algeria (Comptes Rendus, vol. xli, Dec. 31, 1855), was written to support the mythical Bacon, modern physics, against the real Bacon of the Novum Organum. There is no special object. In these words lies the difference between the two methods.
[In the report to the Greenwich Board of Visitors for 1867 Mr. Airy,[[129]] speaking of the increase of meteorological observatories, remarks, "Whether the effect of this movement will be that millions of useless observations will be added to the millions that already exist, or whether something may be expected to result which will lead to a meteorological theory, I cannot hazard a conjecture." This is a conjecture, and a very obvious one: if Mr. Airy would have given 2-3/4d. for the chance of a meteorological theory formed by masses of observations, he would never have said what I have quoted.]
BASIS OF MODERN DISCOVERY.
Modern discoveries have not been made by large collections of facts, with subsequent discussion, separation, and