VI. Annex the third period to the second remainder, which gives the second dividend.
VII. Double the first two figures of the root;[25] see how often the result is contained in the number made by cutting one figure from the right of the second dividend; use the quotient as the third figure of the root; annex it to the right of the double of the first two figures, and call this the second divisor.
VIII. Get a new remainder, as in V., and repeat the process until all the periods are exhausted; if there be then no remainder, the square root is found; if there be a remainder, the proposed number has no square root, and the number found as its square root is the square root of the proposed number diminished by the remainder.
IX. When it happens that the double of the figures of the root is not contained at all in all the dividend except the last figure, or when, being contained once, 1 is found to give more than the dividend, put a cipher in the square root and in the divisor, and bring down the next period; should the same thing still happen, put another cipher in the root and divisor, and bring down another period; and so on.
EXERCISES.
| Numbers proposed. | Square roots. |
| 73441 | 271 |
| 2992900 | 1730 |
| 6414247921 | 80089 |
| 903687890625 | 950625 |
| 42420747482776576 | 205962976 |
| 13422659310152401 | 115856201 |
164. Since the square of a fraction is obtained by squaring the numerator and the denominator, the square root of a fraction is found by taking the square root of both. Thus, the square root of ²⁵/₆₄ is ⅝, since 5 × 5 is 25, and 8 × 8 is 64. If the numerator or denominator, or both, be not square numbers, it does not therefore follow that the fraction has no square root; for it may happen that multiplication or division by the same number may convert both the numerator and denominator into square numbers (108). Thus, ²⁷/₄₈, which appears at first to have no square root, has one in reality, since it is the same as ⁹/₁₆, whose square root is ¾.
165. We now proceed from (158), where it was stated that any number or fraction being given, a second may be found, whose square is as near to the first as we please. Thus, though we cannot solve the problem, “Find a fraction whose square is 2,” we can solve the following, “Find a fraction whose square shall not differ from 2 by so much as ·00000001.” Instead of this last, a still smaller fraction may be substituted; in fact, any one however small: and in this process we are said to approximate to the square root of 2. This can be done to any extent, as follows: Suppose we wish to find the square root of 2 within ¹/₅₇ of the truth; by which I mean, to find a fraction a/b whose square is less than 2, but such that the square of a/b + ¹/₅₇ is greater than 2. Multiply the numerator and denominator of ²/₁ by the square of 57, or 3249, which gives ⁶⁴⁹⁸/₃₂₄₉. On attempting to extract the square root of the numerator, I find (163) that there is a remainder 98, and that the square number next below 6498 is 6400, whose root is 80. Hence, the square of 80 is less than 6498, while that of 81 is greater. The square root of the denominator is of course 57. Hence, the square of ⁸⁰/⁵⁷ is less than ⁶⁴⁹⁸/₃₂₄₉, or 2, while that of ⁸¹/₅₇ is greater, and these two fractions only differ by ¹/₅₇; which was required to be done.
166. In practice, it is usual to find the square root true to a certain number of places of decimals. Thus, 1·4142 is the square root of 2 true to four places of decimals, since the square of 1·4142, or 1·99996164, is less than 2, while an increase of only 1 in the fourth decimal place, giving 1·4143, gives the square 2·00024449, which is greater than 2. To take a more general case: Suppose it required to find the square root of 1·637 true to four places of decimals. The fraction is ¹⁶³⁷/₁₀₀₀, whose square root is to be found within ·0001, or ¹/₁₀₀₀₀. Annex ciphers to the numerator and denominator, until the denominator becomes the square of ¹/₁₀₀₀₀, which gives ¹⁶³⁷⁰⁰⁰⁰⁰/₁₀₀₀₀₀₀₀₀, extract the square root of the numerator, as in (163), which shews that the square number nearest to it is 163700000-13564, whose root is 12794. Hence, ¹²⁷⁹⁴/₁₀₀₀₀, or 1·2794, gives a square less than 1·637, while 1·2795 gives a square greater. In fact, these two squares are 1·63686436 and 1·63712025.
167. The rule, then, for extracting the square root of a number or decimal to any number of places is: Annex ciphers until there are twice as many places following the units’ place as there are to be decimal places in the root; extract the nearest square root of this number, and mark off the given number of decimals. Or, more simply: Divide the number into periods, so that the units’ figure shall be the last of a period; proceed in the usual way; and if, when decimals follow the units’ place, there is one figure on the right, in a period by itself, annex a cipher in bringing down that period, and afterwards let each new period consist of two ciphers. Place the decimal point after that figure in forming which the period containing the units was used.