Again,
ab gives abc abd abe abf
ac ... acb acd ace acf
and here are 30, or 6 × 5 permutations of 2, each of which gives 4 permutations of 3; the whole number of the last is therefore 6 × 5 × 4, or 120.
Again,
abc gives abcd abce abcf
abd ... abdc abde abdf
and here are 120, or 6 × 5 × 4, permutations of three, each of which gives 3 permutations of four; the whole number of the last is therefore 6 × 5 × 4 × 3, or 360.
In the same way, the number of permutations of 5 is 6 × 5 × 4 × 3 × 2, and the number of permutations of six, or the number of different ways in which the whole six can be arranged, is 6 × 5 × 4 × 3 × 2 × 1. The last two results are the same, which must be; for since a permutation of five only omits one, it can only furnish one permutation of six. If instead of six we choose any other number, x, the number of permutations of two will be x(x-1), that of three will be x(x-1)(x-2), that of four x(x -1)(x-2)(x-3), the rule being: Multiply the whole number of counters by the next less number, and the result by the next less, and so on, until as many numbers have been multiplied together as there are to be counters in each permutation: the product will be the whole number of permutations of the sort required. Thus, out of 12 counters, permutations of four may be made to the number of 12 × 11 × 10 × 9, or 11880.
EXERCISES.