in which there is no middle term.

4. From premises both particular no conclusion can be drawn. This is sufficiently obvious when the first or second rule is broken, as in ‘Some A is X, Some B is X.’ But it is not immediately obvious when the middle term enters one of the premises universally. The following reasoning will serve for exercise in the preceding results. Since both premises are particular in form, the middle term can only enter one of them universally by being the predicate of a negative proposition; consequently (Rule 3) the other premiss must be affirmative, and, being particular, neither of its terms is universal. Consequently both the terms as to which the conclusion is to be drawn enter partially, and the conclusion (Rule 2) can only be a particular affirmative proposition. But if one of the premises be negative, the conclusion must be negative (as we shall immediately see). This contradiction shews that the supposition of particular premises producing a legitimate result is inadmissible.

5. If one premiss be negative, the conclusion, if any, must be negative. If one term agree with a second and disagree with a third, no agreement can be inferred between the second and third.

6. If one premiss be particular, the conclusion must be particular. This is not very obvious, since the middle term may be universally spoken of in a particular proposition, as in Some B is not X. But this requires one negative proposition, whence (Rule 3) the other must be affirmative. Again, since the conclusion must be negative (Rule 5) its predicate is spoken of universally, and, therefore, must enter universally; the other term A must enter, then, in a universal affirmative proposition, which is against the supposition.

In the preceding set of syllogisms we observe one form only which produces A, or E, or I, but three which produce O.

Let an assertion be said to be weakened when it is reduced from universal to particular, and strengthened in the contrary case. Thus, ‘Every A is B’ is called stronger than ‘Some A is B.’

Every form of syllogism which can give a legitimate result is either one of the preceding six, or another formed from one of the six, either by changing one of the assertions into its converse, if that be allowable, or by strengthening one of the premises without altering the conclusion, or both. Thus,

Some A is Xmay be writtenSome X is A
Every X is BEvery X is B
What follows will still follow fromEvery X is A
Every X is B

for all which is true when ‘Some X is A,’ is not less true when ‘Every X is A.’

It would be possible also to form a legitimate syllogism by weakening the conclusion, when it is universal, since that which is true of all is true of some. Thus, ‘Every A is X, Every X is B,’ which yields ‘Every A is B,’ also yields ‘Some A is B.’ But writers on logic have always considered these syllogisms as useless, conceiving it better to draw from any premises their strongest conclusion. In this they were undoubtedly right; and the only question is, whether it would not have been advisable to make the premises as weak as possible, and not to admit any syllogisms in which more appeared than was absolutely necessary to the conclusion. If such had been the practice, then