Before attempting to control the rainfall itself by artifice, we should study how to secure the best use of that which falls, as it comes within reach of human agencies and becomes available by natural causes.

How poorly we understand the use of these water supplies is evidenced yearly by destructive freshets and floods, with the accompanying washing of soil, followed by droughts, low waters, and deterioration of agricultural lands. It is claimed that annually in the United States about 200 square miles of fertile soil are washed into brooks and rivers, a loss of soil capital which can not be repaired for centuries. At the same time millions of dollars are appropriated yearly in the river and harbor bills to dig out the lost farms from the rivers, and many thousands of dollars' worth of crops and other property are destroyed by floods and overflows; not to count the large loss from droughts which this country suffers yearly in one part or the other, and which, undoubtedly, could be largely avoided, if we knew how to manage the available water supplies.

The regulation, proper distribution, and utilization of the rain waters in humid as well as in arid regions—water management—is to be the great problem of successful-agriculture in the future.

One of the most powerful means for such water management lies in the proper distribution and maintenance of forest areas. Nay, we can say that the most successful water management is not possible without forest management.

THE FOREST WATERS THE FARM.

Whether forests increase the amount of precipitation within or near their limits is still an open question, although there are indications that under certain conditions large, dense forest areas may have such an effect. At any rate, the water transpired by the foliage is certain, in some degree, to increase the relative humidity near the forest, and thereby increase directly or indirectly the water supplies in its neighborhood. This much we can assert, also, that while extended plains and fields, heated by the sun, and hence giving rise to warm currents of air, have the tendency to prevent condensation of the passing moisture-bearing currents, forest areas, with their cooler, moister air strata, do not have such a tendency, and local showers may therefore become more frequent in their neighborhood. But, though no increase in the amount of rainfall may be secured by forest areas, the availability of whatever falls is increased for the locality by a well-kept and properly located forest growth. The foliage, twigs, and branches break the fall of the raindrops, and so does the litter of the forest floor, hence the soil under this cover is not compacted as in the open field, but kept loose and granular, so that the water can readily penetrate and percolate; the water thus reaches the ground more slowly, dripping gradually from the leaves, branches, and trunks, and allowing more time for it to sink into the soil. This percolation is also made easier by the channels along the many roots. Similarly, on account of the open structure of the soil and the slower melting of the snow under a forest cover in spring, where it lies a fortnight to a month longer than in exposed positions and melts with less waste from evaporation, the snow waters more fully penetrate the ground. Again, more snow is caught and preserved under the forest cover than on the wind-swept fields and prairies.

All these conditions operate together, with the result that larger amounts of the water sink into the forest soil and to greater depths than in open fields. This moisture is conserved because of the reduced evaporation in the cool and still forest air, being protected from the two great moisture-dissipating agents, sun and wind. By these conditions alone the water supplies available in the soil are increased from 50 to 60 per cent over those available on the open field. Owing to those two causes, then—increased percolation and decreased evaporation—larger amounts of moisture become available to feed the springs and subsoil waters, and these become finally available to the farm, if the forest is located at a higher elevation than the field. The great importance of the subsoil water especially and the influence of forest areas upon it has so far received too little attention and appreciation. It is the subsoil water that is capable of supplying the needed moisture in times of drought.

THE FOREST TEMPERS THE FARM.

Another method by which a forest belt becomes a conservator of moisture lies in its wind-breaking capacity, by which both velocity and temperature of winds are modified and evaporation from the fields to the leeward is reduced.

On the prairie, wind-swept every day and every hour, the farmer has learned to plant a wind-break around his buildings and orchards, often only a single-row of trees, and finds even that a desirable shelter, tempering both the hot winds of summer and the cold blasts of winter. The fields he usually leaves unprotected; yet a wind-break around his crops to the windward would bring him increased yield, and a timber belt would act still more effectively. Says a farmer from Illinois: