London Water Supply.—The quantity of water consumed in London amounts to about 145,000,000 gallons a day. If this quantity could be collected together, it would form a lake 700 yards long, 200 wide, and with a uniform depth of 20 feet.

A Protection for Embankments.—Engineers often have considerable trouble with the loose soil of newly-made embankments, so apt to slip or be washed away before they are covered with vegetation. According to a French railway engineer, the best plan is to sow the banks with the double poppy. Several months elapse before grasses and clovers develop their feeble roots, but the double poppy germinates in a few days, and in a fortnight has grown sufficiently to afford some protection to the slope, while at the end of three or four months the roots, which are ten or twelve inches in length, are found to have interlaced so as to retain the earth far more firmly than those of any grass or grain. Although the double poppy is an annual, it sows itself after the first year.

A Cheap Concrete.—A kind of concrete made without cement is composed of 8 parts of sand, gravel and pebbles, 1 part of burnt and powdered common earth, 1 part of pulverized clinkers and cinders, and 1-1/2 parts of unslacked hydraulic lime. These materials are thoroughly incorporated while dry into a homogeneous mixture, which is then wetted up and well beaten. The result of this is a hard and solid mass, which sets almost immediately, becoming exceedingly strong after a few days. It may be made still stronger by the addition of a small proportion—say 1 part—of cement.

Marking Tools.—To mark tools, first coyer the article to be marked with a thin coating of tallow or beeswax, and with a sharp instrument write the name in the tallow. Clear with a feather, fill the letters with nitric acid, let it remain from one to ten minutes, then dip in water and run off, and the marks will be etched into the steel or iron.

How to Prevent Chisel Handles Splitting.—All carpenters know how soon the butt-end of chisel handles split when daily exposed to the blow of a mallet or hammer. A remedy suggested by a Brooklyn man consists simply of sawing or cutting off the round end of the handle so as to make it flat, and attaching by a few nails on the top of it two discs of sole leather, so that the end becomes similar to the heel of the boot. The two thicknesses of leather will prevent all further splitting, and if, in the course of time, they expand and overlap the wood of the handle, they are simply trimmed off all around.

The Largest Wheel of Its Kind Ever Made in the World.—The greatest wheel of its kind in the world, a very wonder in mechanism, was built for the Calumet and Hecla Mining Company of Lake Superior, Mich., for the purpose of lifting and discharging the "tailings," a waste from the copper mines, into the lake. Its diameter is 54 feet; weight in active operation, 200 tons. Its extreme dimensions are 54 feet in diameter. Some idea of its enormous capacity can be formed from the fact that it receives and elevates sufficient sand every twenty-four hours to cover an acre of ground a foot deep. It is armed on its outer edge with 432 teeth, 4.71 inches pitch and 18 inches face. The gear segments, eighteen in number, are made of gun iron, and the teeth are machine-cut, epicycloidal in form. It took two of the most perfect machines in the world 100 days and nights to cut the teeth alone, and the finish is as smooth as glass. The wheel is driven by a pinion of gun iron containing 33 teeth of equal pitch and face and runs at a speed of 600 feet per minute at the inner edge, where it is equipped with 448 steel buckets that lift the "tailings" as the machine revolves and discharges them into launders that carry them into the lake. The shaft of the wheel is of gun iron, and its journals are 22 inches in diameter by 3 feet 4 inches long. The shaft is made in three sections and is 30 inches in diameter in the center. At a first glance the great wheel looks like an exaggerated bicycle wheel, and it is constructed much on the same principle, with straining rods that run to centers cast on the outer sections of the shaft. The steel buckets on either side of the gear are each 4 feet 5-1/2 inches long and 21 inches deep, and the combined lifting capacity of the 448, running at a speed of 600 feet per minute, will be 3,000,000 gallons of water and 2,000 tons of sand every twenty-four hours. The mammoth wheel is supported on two massive adjustable pedestals of cast iron weighing twelve tons each, and its cost at the copper mines before making a single revolution, $100,000.

Strength of Brick Walls.—The question of strength of brick walls is often discussed, and differences of opinion expressed. The following is one of the rules given:—For first-class buildings, with good workmanship, the general average should not exceed a greater number of feet in height than three times its thickness of wall in inches, and the length not to exceed double the height, without lateral supports of walls, buttresses, etc., as follows for safety:

THICKNESS;SAFE HEIGHT;LENGTH.
8-1/2 inch walls25 feet50 feet.
13 inch walls40 feet80 feet.
17 inch walls55 feet110 feet.
22 inch walls66 feet130 feet.
26 inch walls78 feet150 feet.

Where the lengths must exceed these proportions, as in depots, warehouses, etc., the thickness should be increased, or lateral braces instituted as frequently as practicable.