But if we have not been able to recognise a real corroding power in the great rivers falling in the form of cascades or cataracts, let us inquire elsewhere, in circumstances where the water seems endowed with a still superior power, what are the effects of this agent?
3. Action of Waves.
It is in the sea, an enormous mass, sometimes acquiring, from the action of the winds, an incalculable power, that we must find the maximum of force of the water of the present times. In fact, in this case, the power of transportation is so prodigious, that the strongest barriers, both natural and artificial, are overturned, and the largest stones, together with enormous fragments of rocks torn from their place, transported, and even projected to a distance. But it is to these effects that this immeasurable power is limited. The water, which displaces and transports to a distance these heavy masses, does not abrade the surface when it acts by itself. We see this surface, on rocks and the sides of piers and dikes, perpetually beaten by the waves, covered with fuci, confervæ, byssi, and other delicate vegetables, without roots, which the waves have not prevented from contracting a first and feeble adherence, and which they do not hinder from growing. But, if the waves carry with them pebbles, or even sand, it is those hard bodies which act; the surface of the rocks is abraded, and all vegetation ceases.
The same effect takes place, and is even augmented by the real degradation of the coasts, if the sea acts upon friable rocks, capable of mixing with water, such as argillaceous or calcareous marl, or chalk, or upon rocks which are hard, but naturally fissured, or partly disaggregated, such as certain granites; it then easily removes the crumbled or previously detached parts, scoops out the foot of the rock or steep coast, and causes the upper part, which is deprived of support, to fall. But, in consequence of this fall, it forms a slope, which, by its inclination, deadens the violence of the shock, and even protects the foot of the cliff, for some time only, if it be friable, or capable of disintegration; and for ever, if, being compact, it does not carry in it the causes of destruction. The action of the waves ceasing, the slope is covered with vegetation; and if the coast continues, nevertheless, to be worn, the changes are then owing to causes unconnected with the action of water.
Such is, in few words, the ordinary action of the water of the sea upon steep coasts, and even that of great masses of water in a state of agitation. M. De Luc, in his various works, has estimated this action with a correctness of observation and of reasoning, which is remarkable only, because it has not been adopted by all naturalists; and few have bestowed the unremitting attention upon the subject which this respectable geologist has done. He has shewn, that the destructive action of the waters upon steep shores, and other coasts or abrupt cliffs, was considerably restrained by the very consequences of this action; that the debris which accumulated protected the lower parts of these coasts from the action of the water, or gradually reduced an abrupt coast to a very inclined and permanent slope.
Next, to torrents, to rapid and large rivers, and to waves, it is to currents that a great influence on the earth’s surface has been attributed,—an influence which a highly gifted naturalist, Buffon, has employed to explain all the inequalities of the earth’s surface.
Our knowledge of the action of currents is less precise than that which we possess of rivers. But if we cannot so visibly demonstrate that, in no circumstance similar to those which we have specified, do they scoop out the bottom of the sea into valleys, nor form any mountains, we can, at least, conjecture with much probability, and maintain, that we have no direct and constant proof of that action.
4. Action of Currents.
No one doubts that currents, near coasts, heap up upon the beach, at the mouth of rivers and harbours, pebbles, sand, gravel, mud, or other transportable matters, whether these currents constantly exist, or simply result from the momentary action of a predominating wind; but this action, although already limited to the mobile matters which form the bottom of the sea only in some parts, whether this action, I say, extends to a great depth, that is to several hundred yards, is a question not yet resolved. In the first place, the observation made by mariners, that, in the most violent tempests, the sea is only agitated towards the coasts, or on shallows, and that bodies, sunk to a great depth, (and still what is this depth in comparison with that of the sea,) do not feel the motions of its surface, nor that of currents; and, secondly, reasoning, and even calculation, according to Messieurs La Place and Poisson, concur to shew, that the violent motions of the waters of the sea are not propagated to a great depth. It is therefore probable, that all the transportable matters, which are at this depth, must remain nearly in the position in which they are, since our Continents have assumed their present configuration, unless phenomena and motions of the sea take place at the bottom, of which we are ignorant, and which are foreign to the subject which at present occupies our attention.
But if we have no perfectly certain ideas regarding the propagation of the motions of the sea in depth, we can assert, that, whatever that extent and that power may be, the submarine currents no more abrade the rocks than rivers do the surface of the land. This proof is always derived from the same kind of fact, namely, from the vegetable and animal bodies which constantly cover the rocks, and which are found, at all times, by means of various sorts of dredge-fishing. In fact, no one has remarked, that the places in which oysters, mussels, corals and sponges are fished, are more sheltered from currents than others; nor that these places, after violent tempests, have been deprived, and consequently, as it were, despoiled of those productions, which, by covering the rocks, demonstrate that they preserve the integrity of their surface. Many of these bodies, however, as sponges, fuci and confervæ, contract but a feeble adherence to the bodies upon which they are placed.