That all sorts of soils are not equally adapted to all productions, is a remark of Virgil’s, the truth of which becomes obvious, when we consider many facts ascertained in Agriculture and Forestry. If, therefore, as the poet advises, our object be to determine what each particular region can produce, and what it cannot, our attention ought in the first place to be directed to the physical circumstances which exert their influence over vegetation.

All plants that are the subject of cultivation are fixed in the ground. By one of their parts, through which they derive their principal nourishment, they penetrate into the soil, which serves them as a basis, and affords them the means of procuring subsistence; by the other part they raise themselves into the atmosphere, which is not only necessary in itself for their existence, but is also the medium through which they derive the warming and vivifying influence of the solar rays. Hence we can understand how much the existence of plants must be influenced by differences in the condition of the soil and air.

The superficial crust of the globe is formed of soil capable of producing vegetables. This productive soil, however, is not everywhere continuous, being interrupted on the one hand by the watery covering of the earth, and on the other by perennial snow and bare rock. Where soil does occur, it separates the solid mass of the earth from the atmosphere, and is the porous medium through which the gaseous and watery parts of the latter may act in a greater or less degree upon the former. It is very seldom that strata of vegetable soil lie beneath strata of other matters; and where they occur in this position, the overlying strata are either of volcanic or of alluvial origin. Of the former case, a very remarkable example occurs in the Isle of Bourbon, in which large tracts covered with vegetables and even trees, have been laid waste and overwhelmed by streams of lava; and large rivers in their overflowings occasionally leave deposits of various characters, over the productive soil containing remains of formerly existing plants.

Productive soil, as well in regard to its situation as to its constitution, depends upon the nature and condition of the rocks which form the solid mass of the earth. It is always of secondary formation, compared with the rock on which it rests, its principal parts usually originating from the decomposition of this rock. While the forms of the surface of the solid mass of the earth, have much influence upon the action of the atmosphere, they also in some degree modify that of climate. From these circumstances it would appear that the solid substrata of productive soil exert an influence in various ways upon vegetables; whence it follows that, in order to obtain a more intimate knowledge of the conditions which operate upon their existence, it is necessary to call in geology to our assistance.

Although the scientific study of agriculture has made great progress in our times, the relations which exist between the constitution of the solid crust of the earth, and the formation and nature of vegetable soil, present a wide field for investigation. Geologists have hitherto too much neglected the examination of the productive covering of the earth, and those who have treated scientifically of agriculture and forestry have usually looked upon the vegetable soil in its own simple capacity, without regard to its foundation and origin. To point out the way by which we are to proceed in our investigation of the relations which exist between the solid crust of the earth and the productive soil which covers it, is the principal object of the following observations.

Bare rocks cannot be made subservient to the purposes of agriculture. Lichens indeed, cover the surface of rocks, deriving their chief nutriment from the atmosphere; mosses draw the water necessary for their subsistence from the fissures of stones; the roots of grasses seek in the chinks of rocks for particles of earth sufficient for their sustenance; various shrubs and trees penetrate here and there into rocky masses by their roots (having the powerful and continued action of living wedges), where the cohesion of the parts is smallest, in order to prepare a fixed seat for themselves, and be secure from the pernicious effects of the atmosphere. The surface of the earth is always sterile, however, when it shows a continuity of naked rock, uncovered by vegetable mould. The cultivation of fields and woods, and even the rearing of cattle, cannot therefore find scope in regions which are entirely rocky. Abrupt and precipitous mountains being generally in this condition are usually barren; but in plains and on declivities, a bare rocky surface is much less frequently the cause of sterility than an unfavourable proportion of mould. Some rocky and moderately elevated regions also occur, more or less destitute of vegetable mould, whose sterility depends upon volcanic causes. Iceland, for example, affords cases of this description. In many parts of Sweden, as in Westrogothia, in Scotland, &c., there occur many elevated regions, in which gneiss and granite predominating, exclude to a great extent all kinds of vegetation excepting lichens. In the same districts we sometimes meet with pastures and corn-fields interrupted here and there by bare rocks rising but little above the surface, by which the value of the ground is much diminished, and great impediments opposed to its cultivation.

As bare rocks are incapable of all cultivation, their distance from the under surface of vegetable mould must also be of great importance. In the plains of the north of Germany, for example, this distance is often so great that a rocky surface is never found, while, on the contrary, in other countries, especially such as are mountainous, the roots of plants not unfrequently touch the subjacent rock; the variation between these extremes being of all degrees. The effect of the distance of the surface of the solid rock from the under surface of productive soil may be both direct and indirect, and may vary much, not only with reference to the species of rock, but also to the vegetables.

The surface of the solid strata of the earth has a direct influence upon the cultivation of plants, because it terminates the extension of their roots, and limits the volume of the soil necessary for their sustenance. As the length and direction of the roots vary exceedingly in different species, the difference of effect with regard to their growth, and the approximation of the rock to the under surface of the soil, must in general be so much the less prejudicial in proportion as the roots decline from the perpendicular; whence it follows, that certain grasses, and some small pasture plants, may grow in very thin layers of soil, where the larger grasses and pasture plants with longer roots, could not find subsistence; and that shrubs and trees, with long perpendicular roots, cannot survive in many places, where others with more horizontal roots may thrive. These inferences are proved to be correct by observations in agriculture and forestry generally known.

Mountainous regions, which are not so elevated but that corn might grow sufficiently well in them, in so far as depends upon the conditions of the air or climate, are yet frequently not adapted for its cultivation, on account of the too near approach of the rock to the surface, or shallowness of the soil, and produce nothing but grasses, and some other pasture plants, among which, however, there is the greatest difference in this respect. Trifolium montanum, for example, can support itself on rocky mountains, where T. pratense could not grow. Hedysarum onobrychis grows luxuriantly on the sunny declivities of calcareous mountains, where Medicago sativa (Lucern) does not find a suitable station. The cultivation of this excellent pasture plant in some mountainous regions, especially where the rocks are calcareous, has not proved so advantageous as might have been expected, because the plants have died out in the course of a few years; whereas, in proper places, where its very long roots find a sufficient depth of soil, they usually last for a great length of time.

The vicinity of the rock to the under surface of the vegetable mould, or the shallowness of the soil, seems to be the principal cause why the Beech grows better on many calcareous mountains than the Oak, which, on the other hand, finds a fitter station on mountains in which sandstone predominates, where the soil is usually deeper. It would seem to be for a similar reason that the Beech grows in many rocky districts, for example, on the Hartz Mountains, at pretty considerable heights, especially on the sides of valleys which run to the south, while these places do not admit the Oak, which is found in the middle provinces of Sweden and Norway; while the Beech, on the other hand, grows only in the southern parts. From the deficiency of soil, the Upper Hartz can produce neither the Pinus pinea, nor P. sylvestris; the horizontal roots, however, of the Abies, or Norway Spruce, are content with the small portion of earth which covers the greywacke and slate, although they cannot find sufficient hold to protect its lofty trunks from being thrown down by the tempest. In some parts of the Forest of Thuringia, where the covering of loose earth is deeper than in the Hartz, the Pinus picea, or pitch pine, grows luxuriantly. The common fir, Pinus sylvestris, which attains a great height in proper soil, on the contrary, is stunted and distorted on rocky mountains, where the roots soon come in contact with the rock. It there loses the character of a tree, and assumes that of a shrub, as in place of a single upright stem, several branches shoot out, and these, not unfrequently, are creeping or bent.