The origin of the materials which enter into the composition of transported soil, has been already considered. From their difference may be easily explained why soil generated from the debris of primitive crystalline rocks has different qualities from soil which has been derived from strata of sandstone or marl.
The principal powers which contribute to the transportation of soil, are, The weight of loose masses, ice, and water. The weight of loose masses is a cause of transportation which we frequently see in operation. By it the huge cones of debris at the base and upon the declivities of precipices and mountains, are gradually carried off toward the bottom of the valleys; a phenomenon which can scarcely any where be better seen than in the valleys of the Alps, where mountains sometimes occur evidently consisting of debris, and clothed with trees and shrubs, or covered with pastures, the masses of which are gradually moved, as upon inclined planes, by the action of the water which percolates through them.
Ice effects the transportation of rocks and debris, with a power which nothing can resist. This is no where more conspicuous than among the glaciers of the Alps, by the falling of which great heaps of stones and rubbish are produced. The transportation of large stones by means of ice may also be seen in our mountain torrents in winter. Huge masses of stone, scattered over the plains of the north of Germany and the islands of Denmark, and often very prejudicial to agriculture, whose northern origin appears to be established, may have been carried by the same powerful agent from Finland, Sweden and Norway, into those countries, at a time when the plains of northern Germany, with the other flat districts along the shores of the Baltic, were still covered by the waves of the ocean.
In the formation of transported soil, water usually exerts a great degree of power. By means of it, not only are vast masses transported to the greatest distances, but their parts are at the same time crumbled down and mingled together. To these operations are to be attributed the various terminations of different soils at horizontal distances, as well as the different alternations of their strata at vertical ones. The power of water in the formation of transported soil varies, not only according to the different inclinations of its channel, but also in regard to the form, size, and weight of the parts carried off by it; for which reason, in the formation of such soils, the same phenomena take place on a large scale, that we see on a smaller, in performing the operations of breaking and washing the ores of metals. For the same reason that, in these processes, the larger particles subside, while the smaller are propelled, from which again the heavier particles of ore are sooner deposited than the lighter; in plains in the vicinity of a mountain, covered with transported soil, stones and debris are usually seen first, then earth, clay, and sand mixed together, and farther on, finer sand, with strata of clay.
Transported or secondary soil, produced by water, according to the mode of its formation, is divided into four classes, viz.—1. Soil of Valleys; 2. River Soil; 3. Lake Soil; 4. Marine Soil.
1. Soil of Valleys.—It is washed down by rain and snow water, and partly also produced by rivulets, which carry off the loose parts from the declivities of mountains to the plains. The nature of this soil in general clearly shews the nearness of its origin. Its depth is always greatest in the bottom of the valley, and gradually diminishes toward the declivities of the mountains. The curvature of the different strata is usually accommodated to the irregularity of its external form, so that when a section is made of them, they exhibit a series of parallel curved lines.
2. River Soil, or the soil found in the beds and banks of rivers, and which is produced by the continual propelling power of large rivers. To this class belong two different kinds; 1st, Soil containing pebbles of various sizes, produced by the power of torrents in the vicinity of mountains; and, 2d, Earth or mud, deposited in the beds of rivers, in places at a distance from mountains. A peculiarity of river soil in general is, that it is much extended in length, while its breadth is comparatively but small. The different layers have neither so much irregularity as in the preceding kind, nor are they so precise in arrangement as in the following.
3. Lake Soil, deposited at the bottom of still water. To this class is to be referred the soil in the bottoms of valleys, which had formerly been lakes, either separate or connected with rivers. The horizontal dimensions of this kind of soil are often more or less equal. Sometimes, indeed, the length is greater than the breadth; not, however, in the same degree as in soil deposited in the bed of rivers. The surface is usually plane, and the different strata alternate in a parallel manner.
4. Marine Soil, that is to say, the mud of the ancient ocean. It is the greatest of all in its extent, both in a horizontal and a vertical direction. Its surface is more or less undulated, very seldom even. Its masses are both very thick and very uniform in composition. Different and alternating strata, however, do occur, whose forms and dimensions are usually more or less regular, and which are not unfrequently undulated.