Thus, as by a constant supply of fuel in a chimney you keep a warm room, so by a constant supply of food in the stomach you keep a warm body; only where little exercise is used the heat may possibly be conducted away too fast; in which case such materials are to be used for clothing and bedding, against the effects of an immediate contact of the air, as are in themselves bad conductors of heat, and, consequently, prevent its being communicated through their substance to the air. Hence what is called warmth in wool, and its preference on that account to linen, wool not being so good a conductor; and hence all the natural coverings of animals to keep them warm are such as retain and confine the natural heat in the body by being bad conductors, such as wool, hair, feathers, and the silk by which the silkworm, in its tender embryo state, is first clothed. Clothing, thus considered, does not make a man warm by giving warmth, but by preventing the too quick dissipation of the heat produced in his body, and so occasioning an accumulation.

There is another curious question I will just venture to touch upon, viz., Whence arises the sudden extraordinary degree of cold, perceptible on mixing some chymical liquors, and even on mixing salt and snow, where the composition appears colder than the coldest of the ingredients? I have never seen the chymical mixtures made, but salt and snow I have often mixed myself, and am fully satisfied that the composition feels much colder to the touch, and lowers the mercury in the thermometer more than either ingredient would do separately. I suppose, with others, that cold is nothing more than the absence of heat or fire. Now if the quantity of fire before contained or diffused in the snow and salt was expelled in the uniting of the two matters, it must be driven away either through the air or the vessel containing them. If it is driven off through the air, it must warm the air, and a thermometer held over the mixture, without touching it, would discover the heat by the raising of the mercury, as it must and always does in warm air.

This, indeed, I have not tried, but I should guess it would rather be driven off through the vessel, especially if the vessel be metal, as being a better conductor than air; and so one should find the basin warmer after such mixture. But, on the contrary, the vessel grows cold, and even water, in which the vessel is sometimes placed for the experiment, freezes into hard ice on the basin. Now I know not how to account for this, otherwise than by supposing that the composition is a better conductor of fire than the ingredients separately, and, like the lock compared with the wood, has a stronger power of attracting fire, and does accordingly attract it suddenly from the fingers, or a thermometer put into it, from the basin that contains it, and from the water in contact with the outside of the basin; so that the fingers have the sensation of extreme cold by being deprived of much of their natural fire; the thermometer sinks by having part of its fire drawn out of the mercury; the basin grows colder to the touch, as, by having its fire drawn into the mixture, it is become more capable of drawing and receiving it from the hand; and, through the basin, the water loses its fire that kept it fluid; so it becomes ice. One would expect that, from all this attracted acquisition of fire to the composition, it should become warmer; and, in fact, the snow and salt dissolve at the same time into water, without freezing.

B. Franklin.


[Peter Franklin, Newport, Rhode Island.]

ON THE SALTNESS OF SEAWATER.

London, May 7, 1760.

* * It has, indeed, as you observe, been the opinion of some very great naturalists, that the sea is salt only from the dissolution of mineral or rock-salt which its waters happen to meet with. But this opinion takes it for granted that all water was originally fresh, of which we can have no proof. I own I am inclined to a different opinion, and rather think all the water on this globe was originally salt, and that the fresh water we find in springs and rivers is the produce of distillation. The sun raises the vapours from the sea, which form clouds, and fall in rain upon the land, and springs and rivers are formed of that rain. As to the rock-salt found in mines, I conceive that, instead of communicating its saltness to the sea, it is itself drawn from the sea, and that, of course, the sea is now fresher than it was originally. This is only another effect of nature's distillery, and might be performed various ways.

It is evident, from the quantities of seashells, and the bones and teeth of fishes found in high lands, that the sea has formerly covered them. Then either the sea has been higher than it now is, and has fallen away from those high lands, or they have been lower than they are, and were lifted up out of the water to their present height by some internal mighty force, such as we still feel some remains of when whole continents are moved by earthquakes In either case it may be supposed that large hollows, or valleys among hills, might be left filled with seawater, which, evaporating, and the fluid part drying away in a course of years, would leave the salt covering the bottom; and that salt, coming afterward to be covered with earth from the neighbouring hills, could only be found by digging through that earth. Or, as we know from their effects that there are deep, fiery caverns under the earth, and even under the sea, if at any time the sea leaks into any of them, the fluid parts of the water must evaporate from that heat, and pass off through some volcano, while the salt remains, and, by degrees and continual accretion, becomes a great mass. Thus the cavern may at length be filled, and the volcano connected with it cease burning, as many, it is said, have done; and future miners, penetrating such cavern, find what we call a salt-mine. This is a fancy I had on visiting the salt-mines at Northwich with my son. I send you a piece of the rock-salt which he brought up with him out of the mine.