Plate XI.

Vol. II. page 327.

A Magic Square of Squares.

View larger image here

Published as the Act directs, April 1, 1806, by Longman, Hurst, Rees & Orme, Paternoster Row.

So this magical square seems perfect in its kind. But these are not all its properties; there are 5 other curious ones, which, at some other time, I will explain to you.

Mr. Logan then shewed me an old arithmetical book, in quarto, wrote, I think, by one Stifelius, which contained a square of 16, that he said he should imagine must have been a work of great labour; but if I forget not, it had only the common properties of making the same sum, viz. 2056, in every row, horizontal, vertical, and diagonal. Not willing to be out-done by Mr. Stifelius, even in the size of my square, I went home, and made, that evening, the following magical square of 16, which, besides having all the properties of the foregoing square of 8, i. e. it would make the 2056 in all the same rows and diagonals, had this added, that a four-square hole being cut in a piece of paper of such a size as to take in and show through it just 16 of the little squares, when laid on the greater square, the sum of the 16 numbers so appearing through the hole, wherever it was placed on the greater square, should likewise make 2056. This I sent to our friend the next morning, who, after some days, sent it back in a letter with these words: "I return to thee thy astonishing or most stupendous piece of the magical square, in which——" but the compliment is too extravagant, and therefore, for his sake, as well as my own, I ought not to repeat it. Nor is it necessary; for I make no question but you will readily allow this square of 16 to be the most magically magical of any magic square ever made by any magician. (See the [Plate.])

I did not, however, end with squares, but composed also a magic circle, consisting of 8 concentric circles, and 8 radial rows, filled with a series of numbers from 12 to 75 inclusive, so disposed as that the numbers of each circle, or each radial row, being added to the central number 12, they make exactly 360, the number of degrees in a circle; and this circle had, moreover, all the properties of the square of 8. If you desire it, I will send it; but at present, I believe, you have enough on this subject. I am, &c.