Minkowski’s Conclusion. The relativity theory requires that we thoroughly reorganise our method of measuring time. But this is intimately associated with our method of measuring space, the distance between two points. As we proceed we find that space without time has little meaning, and vice versa. This leads Minkowski to the conclusion that “time by itself and space by itself are mere shadows; they are only two aspects of a single and indivisible manner of coordinating the facts of the physical world.” Einstein incorporated this time-space idea in his theory of relativity.
How We Measure a Point in Space. Suppose I say to you that the chemical laboratory of Columbia University faces Broadway; would that locate the laboratory? Hardly, for any building along Broadway would face Broadway. But suppose I add that it is situated at Broadway and 117th Street, south-east? there could be little doubt then. But if, further, this laboratory would occupy but part of the building, say the third floor; then the situation would be specified by naming Broadway, 117th Street S. E., third floor. If Broadway represents length, 117th Street width, and third floor height, we can see what is meant when we say that three dimensions are required to locate a position in space.
The Fourth Dimension. A point on a line may be located by one dimension; a point on a wall requires two dimensions; a point in the room, like the chemical laboratory above ground, needs three. The layman cannot grasp the meaning of a fourth dimension; yet the mathematician does imagine it, and plays with it in mathematical terms. Minkowski and Einstein picture time as the fourth dimension. To them time occupies no more important position than length, breadth, or thickness, and is as intimately related to these three as the three are to one another. H. G. Wells, the novelist, has beautifully caught this spirit when in his novel, “The Time Machine,” he makes his hero travel backwards and forwards along time just as a man might go north or south. When the man with his time machine goes forward he is in the future; when he goes backwards he is in the past.
In reality, if we stop to think a minute, there is no valid reason for the non-existence of a fourth dimension. If one, two and three dimensions, why not four—and five and six, for that matter? Theoretically at least there is no reason why the limit should be set at three. However, our minds become sluggish when we attempt to picture dimensions beyond three; just as an extraordinary effort on our part is needed to follow Einstein when he “juggles” with space and time.
Our difficulty in imagining four dimensions may be likened to the difficulty two-dimensioned beings would experience in imagining us, beings of the conventional three dimensions. Suppose these two-dimensional beings were living on the surface of the earth; what could they see? They could see nothing below and nothing above the surface. They would see shifting surfaces as we walked about, but being sensitive to length and breadth only, and not to height, they could gain no notion whatsoever of what we really look like. It is thus with us when we attempt to picture four-dimensional space.
Perhaps the analogy of the motion picture may help us somewhat. As everybody knows, these motion pictures consist of a series of photographs which are shown in rapid succession on the screen. Each photograph by itself conveys a sensation of space, that is, of three dimensions; but one photograph rapidly following another conveys the sensation of space and time—four dimensions. Space and time are interlinked.
The Time-space Idea Further Developed. We have already alluded to the fact that objects in space moving with different velocities build up different time intervals. Thus the velocity of the star Arcturus, if compared with reference to the earth, moves at the rate of 200 miles a second. Its motion through space is different from ours. Objects which, according to Lorentz, contract in the direction of their motion to an extent proportional to their velocity, will contract differently on the surface of Arcturus than on the earth. Our space is not Arcturus’ space; neither is Arcturus’ time our time. And what is true of the discrepancies existing between the space and time conceptions of the earth and Arcturus is true of any other two bodies in space moving at different velocities.
But is there no relationship existing between the space and time of one body in the universe as compared to the space and time of another? Can we not find something which holds good for all bodies in the universe? We can. We can express it mathematically. It is the concept of time and space interlinked; of time as the fourth dimension, length, breadth and thickness being the other three; of time as one of four co-ordinates and at right angles to the other three (a situation which requires a terrific stretch of the imagination to visualize). The four dimensions are sufficient to co-ordinate the time-space relationships of all bodies in the cosmos, and hence have a universality which is totally lacking when time and space are used independently of one another. The four components of our time-space are up-and-down, right-and-left, backwards-and-forwards, and sooner-and-later.
“Strain” and “Distortion” in Space. The four-dimensional unit has been given the name “world-line,” for the “world-line” of any particle in space is in reality a complete history of that particle as it moves about in space. Particles, we know, attract one another. If each particle is represented by a world-line these world-lines will be deflected from their course owing to such attraction.
Imagine a bladder representing the universe, with lines on it representing world-lines. Now squeeze the bladder. The world-lines are bent in various directions; they are “distorted.” This illustrates the influence of gravity on these world-lines; it is the “strain” brought about due to the force of attraction. The distorted bladder illustrates even more, for it is a true representation of the real world.