{52} Why did we not keep the two judgments in the same logical shape? Why did we say “This heap” and “The square”? Why did we not say “this” in both propositions, or “the” in both propositions? Because the different “matter” demands this difference of form. Let us try. “The heap of books has four books in it.” Probably we interpret this proposition to mean just the same as if we had said “This heap.” That is owing to the fact that the judgment naturally occurs to us in its right form. But if we interpret “The heap” on the analogy of our interpretation of “The square,” our judgment will have become false.

It will have come to mean “Every heap of books has four books in it,” and a judgment of perception will not bear this enlargement. The subject is composite, and one, the most essential of its elements, is destroyed by the change from “this” to “the.”

Let us try again. Let us say “This square has four sides.” That is not exactly false, but it is ridiculous. Every square must have four sides, and by saying “this square” we strongly imply that foursidedness is a relation of which we are aware chiefly, if not exclusively, in the object attended to in the moment of judging, simply through the apprehension of that moment. By this implication the form of the judgment abandons and all but denies the character of systematic necessity which its content naturally demands. It is like saying, “It appears to me that in the present instance two and two make four.” The number of sides in a square, then, is not a mere fact of perception, while the number of books in a heap is such a fact.

But you may answer by suggesting the case that an {53} uninstructed person—say a child, with a square figure before him, and having heard the name square applied to figures generally resembling that figure, may simply observe the number of sides, without knowing any of the geometrical properties connected with it; will he not then be right in saying, “This square has four sides”?

Certainly not. In that case he has no right to call it a square. It would only be a name he had picked up without knowing what it meant. All he has the right to say would be, “This object” or “This figure has four sides.” That would be a consistent judgment of mere perception, true as far as it went. It is always possible to apprehend the more complex objects of knowledge in the simpler forms; but then they are not apprehended adequately, not as complex objects. It is also possible to apply very complex forms of knowledge to very simple objects. Most truths that can be laid down quite in the abstract about a human mind could also be applied in some sense or other to any speck of protoplasm, or to any pebble on the seashore. And every simple form of knowledge is always being pushed on, by its own defects and inconsistencies, in the direction of more complex forms.

So far I have been trying to show that objects are capable of being different in their nature as knowledge as well as in their individual properties; and that their different natures as knowledge depend on the way in which their parts are connected together. We took two objects of knowledge, and found that the mode of connection between the parts required two quite different kinds of judgment to express them. Let us look at the reason of this.

{54} The relation of Part and Whole

3. The relation of Part and Whole is a form of the relation of Identity and Difference. Every Judgment expresses the unity of some parts in a whole, or of some differences in an Identity. This is the meaning of “construction” in knowledge. We saw that knowledge exists in judgment as a construction (taking this to include maintenance) of reality.

The expression whole and parts may be used in a strict or in a lax sense.

In a strict sense it means a whole of quantity, that is, a whole considered as made up by the addition of parts of the same kind, as a foot is made up of twelve inches. In this sense the whole is the sum of the parts. And even in this sense the whole is represented within every part by an identity of quality that runs through them all. Otherwise there would be nothing to earmark them as belonging to the particular whole or kind of whole in question. Parts of length make up a whole of length, parts of weight a whole of weight, parts of intensity a whole of intensity, in so far as a whole of intensity is quantitative, which is not a perfectly easy question. Wholes like these are “Sums” or “Totals”. The relation of whole to part in this sense is a very simple case of the relation of differences in an identity, but for that very reason is not the easiest case to appreciate. The relation is so simple that it is apt to pass unnoticed, and in dealing with numerical computation we are apt to forget that in application to any concrete problem the numbers must be numbers of something having a common quality, and that the nature of this something may affect the result as related to real fact, though not as a conclusion from pure {55} numerical premisses. In a whole of pure number the indifference of parts to whole reaches its maximum. The unit remains absolutely the same, into whatever total of addition it may enter.