79. A Portable Barometer. The mercury barometer is large and inconvenient to carry from place to place, and a more portable form has been devised, known as the aneroid barometer (Fig. 45). This form of barometer is extremely sensitive; indeed, it is so delicate that it shows the slight difference between the pressure at the table top and the pressure at the floor level, whereas the mercury barometer would indicate only a much greater variation in atmospheric pressure. The aneroid barometers are frequently made no larger than a watch and can be carried conveniently in the pocket, but they get out of order easily and must be frequently readjusted. The aneroid barometer is an air-tight box whose top is made of a thin metallic disk which bends inward or outward according to the pressure of the atmosphere. If the atmospheric pressure increases, the thin disk is pushed slightly inward; if, on the other hand, the atmospheric pressure decreases, the pressure on the metallic disk decreases and the disk is not pressed so far inward. The motion of the disk is small, and it would be impossible to calculate changes in atmospheric pressure from the motion of the disk, without some mechanical device to make the slight changes in motion perceptible.

FIG. 45.—Aneroid barometer.

In order to magnify the slight changes in the position of the disk, the thin face is connected with a system of levers, or wheels, which multiplies the changes in motion and communicates them to a pointer which moves around a graduated circular face. In Figure 45 the real barometer is scarcely visible, being securely inclosed in a metal case for protection; the principle, however, can be understood by reference to Figure 46.

FIG. 46.—Principle of the aneroid barometer.

80. The Weight of the Air. We have seen that the pressure of the atmosphere at any point is due to the weight of the air column which stretches from that point far up into the sky above. This weight varies slightly from time to time and from place to place, but it is equal to about 15 pounds to the square inch as shown by actual measurement. It comes to us as a surprise sometimes that air actually has weight; for example, a mass of 12 cubic feet of air at average pressure weighs 1 pound, and the air in a large assembly hall weighs more than 1 ton.

We are practically never conscious of this really enormous pressure of the atmosphere, which is exerted over every inch of our bodies, because the pressure is exerted equally over the outside and the inside of our bodies; the cells and tissues of our bodies containing gases under atmospheric pressure. If, however, the finger is placed over the open end of a tube and the air is sucked out of the tube by the mouth, the flesh of the finger bulges into the tube because the pressure within the finger is no longer equalized by the usual atmospheric pressure (Fig. 47).