194. Two Possibilities. Sometimes a city is fortunate enough to be situated near hills and mountains through which streams flow, and in that case the water problem is simple. In such a case all that is necessary is to run pipes, usually underground, from the elevated lakes or streams to the individual houses, or to common reservoirs from which it is distributed to the various buildings.
FIG. 148.—The elevated mountain lake serves as a source of water.
Figure 148 illustrates in a simple way the manner in which a mountain lake may serve to supply the inhabitants of a valley. The city of Denver, for example, is surrounded by mountains abounding in streams of pure, clear water; pipes convey the water from these heights to the city, and thus a cheap and adequate flow is obtained. Such a system is known as the gravity system. The nearer and steeper the elevation, the greater the force with which the water flows through the valley pipes, and hence the stronger the discharge from the faucets.
Relatively few cities and towns are so favorably situated as regards water; more often the mountains are too distant, or the elevation is too slight, to be of practical value. Cities situated in plains and remote from mountains are obliged to utilize the water of such streams as flow through the land, forcing it to the necessary height by means of pumps. Streams which flow through populated regions are apt to be contaminated, and hence water from them requires public filtration. Cities using such a water supply thus have the double expense of pumping and filtration.
195. The Pressure of Water. No practical business man would erect a turbine or paddle wheel without calculating in advance the value of his water power. The paddle wheel might be so heavy that the stream could not turn it, or so frail in comparison with the water force that the stream would destroy it. In just as careful a manner, the size and the strength of municipal reservoirs and pumps must be calculated. The greater the quantity of water to be held in the reservoir, the heavier are the walls required; the greater the elevation of the houses, the stronger must be the pumps and the engines which run them.
In order to understand how these calculations are made, we must study the physical characteristics of water just as we studied the physical characteristics of air.
When we measure water, we find that 1 cubic foot of it weighs about 62.5 pounds; this is equivalent to saying that water 1 foot deep presses on the bottom of the containing vessel with a force of 62.5 pounds to the square foot. If the water is 2 feet deep, the load supported by the vessel is doubled, and the pressure on each square foot of the bottom of the vessel will be 125 pounds, and if the water is 10 feet deep, the load borne by each square foot will be 625 pounds. The deeper the water, the greater will be the weight sustained by the confining vessel and the greater the pressure exerted by the water.
FIG. 149.—Water 1 foot deep exerts a pressure of 62.5 pounds a square foot. [209