and

, as above defined, is what we need in order to define the sum of two relation-numbers. Similar modifications are needed for products and powers. The resulting arithmetic does not obey the commutative law: the sum or product which they are taken. But it obeys the associative law, one form of the distributive law, and two of the formal laws for powers, not only as applied to serial numbers, but as applied to relation-numbers generally. Relation-arithmetic, in fact, though recent, is a thoroughly respectable branch of mathematics.

It must not be supposed, merely because series afford the most obvious application of the idea of likeness, that there are no other applications that are important. We have already mentioned maps, and we might extend our thoughts from this illustration to geometry generally. If the system of relations by which a geometry is applied to a certain set of terms can be brought fully into relations of likeness with a system applying to another set of terms, then the geometry of the two sets is indistinguishable from the mathematical point of view, i.e. all the propositions are the same, except for the fact that they are applied in one case to one set of terms and in the other to another. We may illustrate this by the relations of the sort that may be called "between," which we considered in Chapter IV. We there saw that, provided a three-term relation has certain formal logical properties, it will give rise to series, and may be called a "between-relation." Given any two points, we can use the between-relation to define the straight line determined by those two points; it consists of

and

together with all points