is similar to

. A relation is said to be reflexive when it possesses the first of these properties, symmetrical when it possesses the second, and transitive when it possesses the third. It is obvious that a relation which is symmetrical and transitive must be reflexive throughout its domain. Relations which possess these properties are an important kind, and it is worth while to note that similarity is one of this kind of relations.

It is obvious to common sense that two finite classes have the same number of terms if they are similar, but not otherwise. The act of counting consists in establishing a one-one correlation between the set of objects counted and the natural numbers (excluding 0) that are used up in the process. Accordingly common sense concludes that there are as many objects in the set to be counted as there are numbers up to the last number used in the counting. And we also know that, so long as we confine ourselves to finite numbers, there are just

numbers from 1 up to

. Hence it follows that the last number used in counting a collection is the number of terms in the collection, provided the collection is finite. But this result, besides being only applicable to finite collections, depends upon and assumes the fact that two classes which are similar have the same number of terms; for what we do when we count (say) 10 objects is to show that the set of these objects is similar to the set of numbers 1 to 10. The notion of similarity is logically presupposed in the operation of counting, and is logically simpler though less familiar. In counting, it is necessary to take the objects counted in a certain order, as first, second, third, etc., but order is not of the essence of number: it is an irrelevant addition, an unnecessary complication from the logical point of view. The notion of similarity does not demand an order: for example, we saw that the number of husbands is the same as the number of wives, without having to establish an order of precedence among them. The notion of similarity also does not require that the classes which are similar should be finite. Take, for example, the natural numbers (excluding 0) on the one hand, and the fractions which have 1 for their numerator on the other hand: it is obvious that we can correlate 2 with