The notions of limit and continuity which we have been defining must not be confounded with the notions of the limit of a function for approaches to a given argument, or the continuity of a function in the neighbourhood of a given argument. These are different notions, very important, but derivative from the above and more complicated. The continuity of motion (if motion is continuous) is an instance of the continuity of a function; on the other hand, the continuity of space and time (if they are continuous) is an instance of the continuity of series, or (to speak more cautiously) of a kind of continuity which can, by sufficient mathematical manipulation, be reduced to the continuity of series. In view of the fundamental importance of motion in applied mathematics, as well as for other reasons, it will be well to deal briefly with the notions of limits and continuity as applied to functions; but this subject will be best reserved for a separate chapter.
The definitions of continuity which we have been considering, namely, those of Dedekind and Cantor, do not correspond very closely to the vague idea which is associated with the word in the mind of the man in the street or the philosopher. They conceive continuity rather as absence of separateness, the sort of general obliteration of distinctions which characterises a thick fog. A fog gives an impression of vastness without definite multiplicity or division. It is this sort of thing that a metaphysician means by "continuity," declaring it, very truly, to be characteristic of his mental life and of that of children and animals.
The general idea vaguely indicated by the word "continuity" when so employed, or by the word "flux," is one which is certainly quite different from that which we have been defining. Take, for example, the series of real numbers. Each is what it is, quite definitely and uncompromisingly; it does not pass over by imperceptible degrees into another; it is a hard, separate unit, and its distance from every other unit is finite, though it can be made less than any given finite amount assigned in advance. The question of the relation between the kind of continuity existing among the real numbers and the kind exhibited, e.g. by what we see at a given time, is a difficult and intricate one. It is not to be maintained that the two kinds are simply identical, but it may, I think, be very well maintained that the mathematical conception which we have been considering in this chapter gives the abstract logical scheme to which it must be possible to bring empirical material by suitable manipulation, if that material is to be called "continuous" in any precisely definable sense. It would be quite impossible to justify this thesis within the limits of the present volume. The reader who is interested may read an attempt to justify it as regards time in particular by the present author in the Monist for 1914-5, as well as in parts of Our Knowledge of the External World. With these indications, we must leave this problem, interesting as it is, in order to return to topics more closely connected with mathematics.
CHAPTER XI
LIMITS AND CONTINUITY OF FUNCTIONS
IN this chapter we shall be concerned with the definition of the limit of a function (if any) as the argument approaches a given value, and also with the definition of what is meant by a "continuous function." Both of these ideas are somewhat technical, and would hardly demand treatment in a mere introduction to mathematical philosophy but for the fact that, especially through the so-called infinitesimal calculus, wrong views upon our present topics have become so firmly embedded in the minds of professional philosophers that a prolonged and considerable effort is required for their uprooting. It has been thought ever since the time of Leibniz that the differential and integral calculus required infinitesimal quantities. Mathematicians (especially Weierstrass) proved that this is an error; but errors incorporated, e.g. in what Hegel has to say about mathematics, die hard, and philosophers have tended to ignore the work of such men as Weierstrass.
Limits and continuity of functions, in works on ordinary mathematics, are defined in terms involving number. This is not essential, as Dr Whitehead has shown.[22] We will, however, begin with the definitions in the text-books, and proceed afterwards to show how these definitions can be generalised so as to apply to series in general, and not only to such as are numerical or numerically measurable.
[22]See Principia Mathematica, vol. II. * 230-234.
Let us consider any ordinary mathematical function
, where