All relations that are not symmetrical are called non-symmetrical. Thus “brother” is non-symmetrical, because, if A is a brother of B, it may happen that B is a sister of A.

A relation is called asymmetrical when, if it holds between A and B, it never holds between B and A. Thus husband, father, grandfather, etc., are asymmetrical relations. So are before, after, greater, above, to the right of, etc. All the relations that give rise to series are of this kind.

Classification into symmetrical, asymmetrical, and merely non-symmetrical relations is the first of the two classifications we had to consider. The second is into transitive, intransitive, and merely non-transitive relations, which are defined as follows.

A relation is said to be transitive, if, whenever it holds between A and B and also between B and C, it holds between A and C. Thus before, after, greater, above are transitive. All relations giving rise to series are transitive, but so are many others. The transitive relations just mentioned were asymmetrical, but many transitive relations are symmetrical—for instance, equality in any respect, exact identity of colour, being equally numerous (as applied to collections), and so on.

A relation is said to be non-transitive whenever it is not transitive. Thus “brother” is non-transitive, because a brother of one's brother may be oneself. All kinds of dissimilarity are non-transitive.

A relation is said to be intransitive when, if A has the relation to B, and B to C, A never has it to C. Thus “father” is intransitive. So is such a relation as “one inch taller” or “one year later.”

Let us now, in the light of this classification, return to the question whether all relations can be reduced to predications.

In the case of symmetrical relations—i.e. relations which, if they hold between A and B, also hold between B and A—some kind of plausibility can be given to this doctrine. A symmetrical relation which is transitive, such as equality, can be regarded as expressing possession of some common property, while one which is not transitive, such as inequality, can be regarded as expressing possession of different properties. But when we come to asymmetrical relations, such as before and after, greater and less, etc., the attempt to reduce them to properties becomes obviously impossible. When, for example, two things are merely known to be unequal, without our knowing which is greater, we may say that the inequality results from their having different magnitudes, because inequality is a symmetrical relation; but to say that when one thing is greater than another, and not merely unequal to it, that means that they have different magnitudes, is formally incapable of explaining the facts. For if the other thing had been greater than the one, the magnitudes would also have been different, though the fact to be explained would not have been the same. Thus mere difference of magnitude is not all that is involved, since, if it were, there would be no difference between one thing being greater than another, and the other being greater than the one. We shall have to say that the one magnitude is greater than the other, and thus we shall have failed to get rid of the relation “greater.” In short, both possession of the same property and possession of different properties are symmetrical relations, and therefore cannot account for the existence of asymmetrical relations.

Asymmetrical relations are involved in all series—in space and time, greater and less, whole and part, and many others of the most important characteristics of the actual world. All these aspects, therefore, the logic which reduces everything to subjects and predicates is compelled to condemn as error and mere appearance. To those whose logic is not malicious, such a wholesale condemnation appears impossible. And in fact there is no reason except prejudice, so far as I can discover, for denying the reality of relations. When once their reality is admitted, all logical grounds for supposing the world of sense to be illusory disappear. If this is to be supposed, it must be frankly and simply on the ground of mystic insight unsupported by argument. It is impossible to argue against what professes to be insight, so long as it does not argue in its own favour. As logicians, therefore, we may admit the possibility of the mystic's world, while yet, so long as we do not have his insight, we must continue to study the everyday world with which we are familiar. But when he contends that our world is impossible, then our logic is ready to repel his attack. And the first step in creating the logic which is to perform this service is the recognition of the reality of relations.

Relations which have two terms are only one kind of relations. A relation may have three terms, or four, or any number. Relations of two terms, being the simplest, have received more attention than the others, and have generally been alone considered by philosophers, both those who accepted and those who denied the reality of relations. But other relations have their importance, and are indispensable in the solution of certain problems. Jealousy, for example, is a relation between three people. Professor Royce mentions the relation “giving”: when A gives B to C, that is a relation of three terms.[15] When a man says to his wife: “My dear, I wish you could induce Angelina to accept Edwin,” his wish constitutes a relation between four people, himself, his wife, Angelina, and Edwin. Thus such relations are by no means recondite or rare. But in order to explain exactly how they differ from relations of two terms, we must embark upon a classification of the logical forms of facts, which is the first business of logic, and the business in which the traditional logic has been most deficient.