Simp. Here already arises a Doubt which I think is not to be resolv'd; and that is this: Since 'tis plain that one Line is given greater than another, and since both contain infinite Points, we must surely necessarily infer, that we have found in the same Species something greater than Infinite, since the Infinity of Points of the greater Line exceeds the Infinity of Points of the lesser. But now, to assign an Infinite greater than an Infinite, is what I can't possibly conceive.

Salv. These are some of those Difficulties which arise from Discourses which our finite Understanding makes about Infinites, by ascribing to them Attributes which we give to Things finite and terminate, which I think most improper, because those Attributes of Majority, Minority, and Equality, agree not with Infinities, of which we can't say that one is greater than, less than, or equal to another. For Proof whereof I have something come into my Head, which (that I may be the better understood) I will propose by way of Interrogatories to Simplicius, who started this Difficulty. To begin then: I suppose you know which are square Numbers, and which not?

Simp. I know very well that a square Number is that which arises from the Multiplication of any Number into itself; thus 4 and 9 are square Numbers, that arising from 2, and this from 3, multiplied by themselves.

Salv. Very well; And you also know, that as the Products are call'd Squares, the Factors are call'd Roots: And that the other Numbers, which proceed not from Numbers multiplied into themselves, are not Squares. Whence taking in all Numbers, both Squares and Not Squares, if I should say, that the Not Squares are more than the Squares, should I not be in the right?

Simp. Most certainly.

Salv. If I go on with you then, and ask you, How many squar'd Numbers there are? you may truly answer, That there are as many as are their proper Roots, since every Square has its own Root, and every Root its own Square, and since no Square has more than one Root, nor any Root more than one Square.

Simp. Very true.

Salv. But now, if I should ask how many Roots there are, you can't deny but there are as many as there are Numbers, since there's no Number but what's the Root to some Square. And this being granted, we may likewise affirm, that there are as many square Numbers, as there are Numbers; for there are as many Squares as there are Roots, and as many Roots as Numbers. And yet in the Beginning of this, we said, there were many more Numbers than Squares, the greater Part of Numbers being not Squares: And tho' the Number of Squares decreases in a greater proportion, as we go on to bigger Numbers, for count to an Hundred you'll find 10 Squares, viz. 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, which is the same as to say the 10th Part are Squares; in Ten thousand only the 100th Part are Squares; in a Million only the 1000th: And yet in an infinite Number, if we can but comprehend it, we may say the Squares are as many as all the Numbers taken together.

Sagr. What must be determin'd then in this Case?

Salv. I see no other way, but by saying that all Numbers are infinite; Squares are Infinite, their Roots Infinite, and that the Number of Squares is not less than the Number of Numbers, nor this less than that: and then by concluding that the Attributes or Terms of Equality, Majority, and Minority, have no Place in Infinites, but are confin'd to terminate Quantities.”