Some analogies will make the difference clear. A shock to a mass of dynamite produces quite different effects from an equal shock to a mass of steel: in the one case there is a vast explosion, while in the other case there is hardly any noticeable disturbance. Similarly, you may sometimes find on a mountain-side a large rock poised so delicately that a touch will set it crashing down into the valley, while the rocks all round are so firm that only a considerable force can dislodge them What is analogous in these two cases is the existence of a great store of energy in unstable equilibrium ready to burst into violent motion by the addition of a very slight disturbance. Similarly, it requires only a very slight expenditure of energy to send a post-card with the words "All is discovered; fly!" but the effect in generating kinetic energy is said to be amazing. A human body, like a mass of dynamite, contains a store of energy in unstable equilibrium, ready to be directed in this direction or that by a disturbance which is physically very small, such as a spoken word. In all such cases the reduction of behaviour to physical laws can only be effected by entering into great minuteness; so long as we confine ourselves to the observation of comparatively large masses, the way in which the equilibrium will be upset cannot be determined. Physicists distinguish between macroscopic and microscopic equations: the former determine the visible movements of bodies of ordinary size, the latter the minute occurrences in the smallest parts. It is only the microscopic equations that are supposed to be the same for all sorts of matter. The macroscopic equations result from a process of averaging out, and may be different in different cases. So, in our instance, the laws of macroscopic phenomena are different for mechanical and vital movements, though the laws of microscopic phenomena may be the same.

We may say, speaking somewhat roughly, that a stimulus applied to the nervous system, like a spark to dynamite, is able to take advantage of the stored energy in unstable equilibrium, and thus to produce movements out of proportion to the proximate cause. Movements produced in this way are vital movements, while mechanical movements are those in which the stored energy of a living body is not involved. Similarly dynamite may be exploded, thereby displaying its characteristic properties, or may (with due precautions) be carted about like any other mineral. The explosion is analogous to vital movements, the carting about to mechanical movements.

Mechanical movements are of no interest to the psychologist, and it has only been necessary to define them in order to be able to exclude them. When a psychologist studies behaviour, it is only vital movements that concern him. We shall, therefore, proceed to ignore mechanical movements, and study only the properties of the remainder.

The next point is to distinguish between movements that are instinctive and movements that are acquired by experience. This distinction also is to some extent one of degree. Professor Lloyd Morgan gives the following definition of "instinctive behaviour":

"That which is, on its first occurrence, independent of prior experience; which tends to the well-being of the individual and the preservation of the race; which is similarly performed by all members of the same more or less restricted group of animals; and which may be subject to subsequent modification under the guidance of experience." *

* "Instinct and Experience" (Methuen, 1912) p. 5.

This definition is framed for the purposes of biology, and is in some respects unsuited to the needs of psychology. Though perhaps unavoidable, allusion to "the same more or less restricted group of animals" makes it impossible to judge what is instinctive in the behaviour of an isolated individual. Moreover, "the well-being of the individual and the preservation of the race" is only a usual characteristic, not a universal one, of the sort of movements that, from our point of view, are to be called instinctive; instances of harmful instincts will be given shortly. The essential point of the definition, from our point of view, is that an instinctive movement is in dependent of prior experience.

We may say that an "instinctive" movement is a vital movement performed by an animal the first time that it finds itself in a novel situation; or, more correctly, one which it would perform if the situation were novel.* The instincts of an animal are different at different periods of its growth, and this fact may cause changes of behaviour which are not due to learning. The maturing and seasonal fluctuation of the sex-instinct affords a good illustration. When the sex-instinct first matures, the behaviour of an animal in the presence of a mate is different from its previous behaviour in similar circumstances, but is not learnt, since it is just the same if the animal has never previously been in the presence of a mate.

* Though this can only be decided by comparison with other
members of the species, and thus exposes us to the need of
comparison which we thought an objection to Professor Lloyd
Morgan's definition.

On the other hand, a movement is "learnt," or embodies a "habit," if it is due to previous experience of similar situations, and is not what it would be if the animal had had no such experience.