But although this sort of self-evidence is an absolute guarantee of truth, it does not enable us to be absolutely certain, in the case of any given judgement, that the judgement in question is true. Suppose we first perceive the sun shining, which is a complex fact, and thence proceed to make the judgement 'the sun is shining'. In passing from the perception to the judgement, it is necessary to analyse the given complex fact: we have to separate out 'the sun' and 'shining' as constituents of the fact. In this process it is possible to commit an error; hence even where a fact has the first or absolute kind of self-evidence, a judgement believed to correspond to the fact is not absolutely infallible, because it may not really correspond to the fact. But if it does correspond (in the sense explained in the preceding chapter), then it must be true.
The second sort of self-evidence will be that which belongs to judgements in the first instance, and is not derived from direct perception of a fact as a single complex whole. This second kind of self-evidence will have degrees, from the very highest degree down to a bare inclination in favour of the belief. Take, for example, the case of a horse trotting away from us along a hard road. At first our certainty that we hear the hoofs is complete; gradually, if we listen intently, there comes a moment when we think perhaps it was imagination or the blind upstairs or our own heartbeats; at last we become doubtful whether there was any noise at all; then we think we no longer hear anything, and at last we know we no longer hear anything. In this process, there is a continual gradation of self-evidence, from the highest degree to the least, not in the sense-data themselves, but in the judgements based on them.
Or again: Suppose we are comparing two shades of colour, one blue and one green. We can be quite sure they are different shades of colour; but if the green colour is gradually altered to be more and more like the blue, becoming first a blue-green, then a greeny-blue, then blue, there will come a moment when we are doubtful whether we can see any difference, and then a moment when we know that we cannot see any difference. The same thing happens in tuning a musical instrument, or in any other case where there is a continuous gradation. Thus self-evidence of this sort is a matter of degree; and it seems plain that the higher degrees are more to be trusted than the lower degrees.
In derivative knowledge our ultimate premisses must have some degree of self-evidence, and so must their connexion with the conclusions deduced from them. Take for example a piece of reasoning in geometry. It is not enough that the axioms from which we start should be self-evident: it is necessary also that, at each step in the reasoning, the connexion of premiss and conclusion should be self-evident. In difficult reasoning, this connexion has often only a very small degree of self-evidence; hence errors of reasoning are not improbable where the difficulty is great.
From what has been said it is evident that, both as regards intuitive knowledge and as regards derivative knowledge, if we assume that intuitive knowledge is trustworthy in proportion to the degree of its self-evidence, there will be a gradation in trustworthiness, from the existence of noteworthy sense-data and the simpler truths of logic and arithmetic, which may be taken as quite certain, down to judgements which seem only just more probable than their opposites. What we firmly believe, if it is true, is called knowledge, provided it is either intuitive or inferred (logically or psychologically) from intuitive knowledge from which it follows logically. What we firmly believe, if it is not true, is called error. What we firmly believe, if it is neither knowledge nor error, and also what we believe hesitatingly, because it is, or is derived from, something which has not the highest degree of self-evidence, may be called probable opinion. Thus the greater part of what would commonly pass as knowledge is more or less probable opinion.
In regard to probable opinion, we can derive great assistance from coherence, which we rejected as the definition of truth, but may often use as a criterion. A body of individually probable opinions, if they are mutually coherent, become more probable than any one of them would be individually. It is in this way that many scientific hypotheses acquire their probability. They fit into a coherent system of probable opinions, and thus become more probable than they would be in isolation. The same thing applies to general philosophical hypotheses. Often in a single case such hypotheses may seem highly doubtful, while yet, when we consider the order and coherence which they introduce into a mass of probable opinion, they become pretty nearly certain. This applies, in particular, to such matters as the distinction between dreams and waking life. If our dreams, night after night, were as coherent one with another as our days, we should hardly know whether to believe the dreams or the waking life. As it is, the test of coherence condemns the dreams and confirms the waking life. But this test, though it increases probability where it is successful, never gives absolute certainty, unless there is certainty already at some point in the coherent system. Thus the mere organization of probable opinion will never, by itself, transform it into indubitable knowledge.
CHAPTER XIV. THE LIMITS OF PHILOSOPHICAL KNOWLEDGE
In all that we have said hitherto concerning philosophy, we have scarcely touched on many matters that occupy a great space in the writings of most philosophers. Most philosophers—or, at any rate, very many—profess to be able to prove, by a priori metaphysical reasoning, such things as the fundamental dogmas of religion, the essential rationality of the universe, the illusoriness of matter, the unreality of all evil, and so on. There can be no doubt that the hope of finding reason to believe such theses as these has been the chief inspiration of many life-long students of philosophy. This hope, I believe, is vain. It would seem that knowledge concerning the universe as a whole is not to be obtained by metaphysics, and that the proposed proofs that, in virtue of the laws of logic such and such things must exist and such and such others cannot, are not capable of surviving a critical scrutiny. In this chapter we shall briefly consider the kind of way in which such reasoning is attempted, with a view to discovering whether we can hope that it may be valid.
The great representative, in modern times, of the kind of view which we wish to examine, was Hegel (1770-1831). Hegel's philosophy is very difficult, and commentators differ as to the true interpretation of it. According to the interpretation I shall adopt, which is that of many, if not most, of the commentators and has the merit of giving an interesting and important type of philosophy, his main thesis is that everything short of the Whole is obviously fragmentary, and obviously incapable of existing without the complement supplied by the rest of the world. Just as a comparative anatomist, from a single bone, sees what kind of animal the whole must have been, so the metaphysician, according to Hegel, sees, from any one piece of reality, what the whole of reality must be—at least in its large outlines. Every apparently separate piece of reality has, as it were, hooks which grapple it to the next piece; the next piece, in turn, has fresh hooks, and so on, until the whole universe is reconstructed. This essential incompleteness appears, according to Hegel, equally in the world of thought and in the world of things. In the world of thought, if we take any idea which is abstract or incomplete, we find, on examination, that if we forget its incompleteness, we become involved in contradictions; these contradictions turn the idea in question into its opposite, or antithesis; and in order to escape, we have to find a new, less incomplete idea, which is the synthesis of our original idea and its antithesis. This new idea, though less incomplete than the idea we started with, will be found, nevertheless, to be still not wholly complete, but to pass into its antithesis, with which it must be combined in a new synthesis. In this way Hegel advances until he reaches the 'Absolute Idea', which, according to him, has no incompleteness, no opposite, and no need of further development. The Absolute Idea, therefore, is adequate to describe Absolute Reality; but all lower ideas only describe reality as it appears to a partial view, not as it is to one who simultaneously surveys the Whole. Thus Hegel reaches the conclusion that Absolute Reality forms one single harmonious system, not in space or time, not in any degree evil, wholly rational, and wholly spiritual. Any appearance to the contrary, in the world we know, can be proved logically—so he believes—to be entirely due to our fragmentary piecemeal view of the universe. If we saw the universe whole, as we may suppose God sees it, space and time and matter and evil and all striving and struggling would disappear, and we should see instead an eternal perfect unchanging spiritual unity.