Each car has its own motor, and is therefore entirely independent, thus facilitating switching or changing from one track to another; it will also be possible to have the trains of almost any length, as each car furnishes its own traction and as a greater number of passengers increases its traction, no adding of dead weight is necessary. With one locomotive pulling a long train it is entirely different, as the adding of a number of cars is counteracting the traction of the former, and must be equalized by a corresponding weight of the locomotive, thus furnishing a dead load of no benefit, and besides, necessitating an increased motive force. In making up a train of these independent car motors, flexible electric connections will enable the engineer in the front car to control all the motors, and thus operate the whole train.

Illustration on page [45] describes the Bicycle electric car and the structure for an electric elevated road. The weight of car and motor combined will only be about six tons. With this combination it is possible to maintain a very high rate of speed. Certainly, without exceeding the number of revolutions already attained by electric motors, one hundred and fifty miles an hour would be feasible. Experts have expressed the opinion that electricity is the coming motive power. If this be a fact, as some of the recent electrical experiments seem to indicate, some system should be used which in all cases would be entirely safe, as the public will certainly not patronize any which would imperil their lives or property.

The cars are furnished with a grooved metal keel at each end, inside of which the wheels are revolving, so that, if from any possible cause one of the latter should break, the car would only drop far enough to allow this groove to slide on the rail, but would not allow the guide-wheels to leave the overhead guide-beam.

Now, in regard to collisions, which are apt to occur from many causes, even where a separate line is furnished for outgoing and incoming trains, unless some means are furnished to make such a contingency impossible. There is an electric system at present in practical operation in Austria, where in case trains approach one another too near for safety, a bell is set ringing in the engineer’s cab of the train following, which warns him of danger, and continues to ring until a safe distance between the trains is established. A dial may also be arranged in the engineer’s cab, which will show the position of every train and their relative distance from one another. Either one of these plans would remove all possibility of collision.

Side View of Bicycle Motor Wheel, with Motor Enclosed, Armature Being a Part of the Wheel. Also Detail of Trolley Shoes, Showing Method of Taking Current from the Conductor.

Single Post, Double Track, Steel Elevated Bicycle Structure, for Use in Streets in Villages and Cities. Cost, per mile, $65,000.

Front View of Motor Car “Rocket,” at Bellport, L. I., Showing Power Station and Structure of Railroad.