A contemporary and acquaintance of Harvey was Robert Boyle, one of the most important of the early scientific investigators, who was an avowed disciple of Bacon, and followed his methods with conscientious care. His work covered a large field, but it was concerned mostly with the action of gases. He is best known by "Boyle's Law," which is usually expressed as follows: "When the volume of a mass of gas is changed, keeping the temperature constant, the pressure varies inversely as the volume; or the product of the pressure by the volume remains constant." While it has been found that this law is not absolutely true with all gases at all temperatures and pressures, its departure from accuracy are very small, and these are now definitely known. With certain tabulated corrections, this law is the basis on which most of the calculations for steam engines, air engines and gas engines are made. It is usually expressed by the formula

p v = p´ v´ = constant.

Boyle is said to have "discovered" this law, and Harvey is said to have "discovered" the circulation of the blood. Doubtless they did: but if they had done no more than "discover" these things, no one else would have been the wiser, and the world would have been no richer. What these two men did that made us wiser and the world richer, was to make inventions of definite character, and give them to the world in such manageable forms, that "persons skilled in the art can make and use them."

In 1620, the spirit thermometer, as we know it now, was invented by Drebel. It is by some ascribed to Galileo. An interesting controversy has been waged as to which was actually the inventor. The facts seem to be that Galileo did invent a thermometer in which the height of water in a glass tube indicated approximately the temperature. The tube was long and ended in a bulb at the top. The bulb being warmed with the hand of Galileo, and the open lower end of the tube being immersed in water, and then the warmth of the hand removed, water rose in the tube to a height depending on the warmth of the air in the bulb. The height of the water therefore varied inversely as the temperature. The defect of the instrument was that it was a barometer as much as it was a thermometer; because the varying pressure of the atmosphere caused the water to rise and fall accordingly, and thus falsify the thermal indications. Drebel realized this, and closed both ends of the tube.

Thus Galileo came very near to inventing both the thermometer and the barometer, but yet invented neither! It seems incredible that he should have failed to invent the barometer, having come so near it; for he had been engaged for a long period in investigating the weight of air, and finally had succeeded in ascertaining it. The barometer was invented or rather discovered by Galileo's successor, Torricelli, in 1645. Torricelli, in investigating the action of suction pumps, constructed what now we call a barometer; but it was not until after he had constructed it that he realized that the height of mercury in his tube indicated the pressure of the air outside. Seventy-five years later, Fahrenheit made a great improvement in the thermometer by substituting mercury for spirits.

Meanwhile, Otto von Guericke, following in the footsteps of Galileo and Torricelli, had invented the air-pump, by means of which he succeeded in getting a fairly perfect vacuum in a glass receiver. This seems to have been an invention of the most clear-cut kind, resulting from an idea that occurred to Guericke that he seized upon promptly and put to work to serve mankind. Its influence in giving impetus to the science and art of pneumatics, and the influence of pneumatics on the progress of civilization, are too obvious to need more than to be pointed out. The invention of Guericke is a simple and clear illustration of the "power of an idea"; an illustration of seed falling on good ground and bringing forth fruit an hundred fold.

One of the greatest inventors that ever lived was Isaac Newton, who lived from 1642 till 1728. Even as a child he busied himself with contriving and constructing mechanical appliances, mostly toys. As a young man he occupied himself mostly with studies in mathematics and experiments in physics, especially optics. In 1671 he invented a special form of the reflecting telescope, called after him the Newtonian telescope. He made many experiments in optics, in consequence of which he discovered and announced that white light consists of seven colors, having different degrees of refrangibility. The influence of this discovery on the advancement of learning since that time, it is unnecessary to point out; but we cannot realize too clearly that without it much of the most important progress in optics since that time would have been impossible.

The invention by reason of which Newton is most generally known is his theory or law of gravitation, which he announced in his Principia, published in 1686. In 1609, Kepler had announced his famous laws, that reads:

"1. The orbits of planets are ellipses having the sun at one focus.

"2. The area swept over per hour by the radius joining sun and planet is the same in all parts of the planet's orbit.

"3. The squares of the periodic times of the planets are proportional to the cubes of their mean distances from the sun."

Newton showed from the laws of mechanics which he had discovered that, assuming the first two laws of Kepler to be true, each planet must always be subject to a force directing it toward the sun, that varies inversely as the square of its distance from the sun: otherwise, it would fly away from the sun or toward it. From this, Newton inferred that all masses, great and small, attract each other with a force proportional to their masses, and inversely proportional to the square of the distance between them, and invented what is now called the law of universal gravitation.