Because of the gradual recognition of the value of sea-commerce in the British Isles, and the fact that the stormy seas adjacent necessitated the construction of ships at once sturdy and yet capable of speed, much study and experimentation were carried on during the eighteenth century, especially in England. In these experiments, the invention by Archimedes of the hydrostatic principle of buoyancy supplied the starting-point, and gave an excellent illustration of the influence of invention on history: for from experiments and investigations on floating bodies carried on in England, based on the invention of Archimedes, and followed by others of English origin, sprang England's merchant marine and England's navy and England's domination over a quarter of the land on the surface of the earth.

The eighteenth century closed with the invention of two very important mechanisms that reinforced the power of the human hand with power drawn from external sources: these were the threshing machine and the cotton gin; the former invented by Andrew Meikle in 1788, and the latter by Eli Whitney in 1793. It would be hard to decide with knowledge as to which has had the greater influence in constructing the machine of civilization; but it is not at all hard to realize that the machine of civilization could not have attained its present stage without the assistance of both.

One of the last important inventions of the century was that of an art entirely new, as distinguished from inventions like the cotton gin, that merely increased the value of an art already in existence. This was the invention of lithography, or printing from stone, made by Alois Senefelder in 1796. The first thing printed by him was a piece of music. While this invention was more brilliant than those of Meikle and Whitney, it was hardly so important. Nevertheless, it was important in a high degree and made a valuable addition to civilization.

An invention of a kind different from either Whitney's or Senefelder's was made on October 15, 1793, by Napoleon Bonaparte. He was at that time a young and ill-clad captain of artillery, attending a Council of War in Toulon. An idea for driving out the English had been conceived and embodied in a complete plan by a celebrated engineer, and it had been approved by the Committee on Fortifications. The youthful and prestigeless captain opposed this plan with a vehemence and convincingness that came to be familiarly known a few years later, and proposed in place of it a plan that he had himself conceived and embodied in a concrete form. His plan consisted in the main merely in mounting some guns on a point of land that he designated, from which they could command the British war-ships in the harbor; and it was so much simpler and in every way better, that, despite his obscurity and youth, it was adopted, and he himself was charged with carrying it into operation. This he did; and with such constructive skill and energy, that the British ships were driven from the harbor and the entire vicinity, and without doing any damage to the town. The British soldiers, then unsupported, immediately withdrew.

What was the determining difference between Napoleon's plan and that of the great engineer? The idea conceived.


[CHAPTER VIII]
THE AGE OF STEAM, NAPOLEON AND NELSON

In the early part of the nineteenth century began what has been called the Age of Steam; but before it ended, it was supplanted by the Age of Electricity. When the century opened, the steam engine of Watt existed in a practical and useful form, and the numberless experiments of the physicists in the preceding century had laid bare the main laws governing the force and the expansion of steam and air, and of gases and vapors in general. The laws of the expansion of solids and liquids were also understood in their main features, and the various inventions mentioned in the last chapter were in operation. Seizing on the facilities thus supplied, and noting the worldly success that certain discoverers and inventors had achieved, the inventors of the nineteenth century got speedily to work. The result was that the civilized world at the end of the nineteenth century was vastly different from the civilized world at the end of the eighteenth century.

In general terms, it may be declared that during the first half of the nineteenth century, the principal inventions were in the utilization of heat, especially in the form of steam engines; while during the latter half, the principal inventions were electrical:—though some very important electrical inventions were made before 1850. In this brief résumé, no attempt will be made to describe or even mention all the inventions made, or even all the important ones; for such an attempt would be impossible to carry out. Only a few super-important ones will be mentioned.