In Napoleon's case, it led him to the unforgivable military crime; that of underestimating the enemy. His imagination, by presenting a magnified image of himself, presented relatively dwarfed images of his antagonists. The very faculty (imagination) which started Napoleon on his great successes, started him now on his great reverses. The actual beginning of these was in his carelessly planned campaign in Russia. His invention seems to have failed him both in planning the campaign and in meeting situations afterwards; because his imagination failed to picture each situation to him exactly as it was.

But the Russian campaign did not wholly ruin him. Even after that, even after Elba, situations were sometimes presented to him, such that (although Trafalgar had prevented him from achieving European domination), yet, if he had been able to see them as clearly as he had seen situations in his unspoiled days, he might, at least have saved himself from ruin. But his imagination had become impaired and therefore his powers of invention also.

Napoleon as general, and Nelson as admiral were what we may term "opportunistic inventors," who made inventions for meeting transient situations with success, as distinguished from inventors like Newton and Watt, who made permanent contributions to the welfare of mankind. Napoleon as statesman, however, made contributions of a permanent character.

A supremely valuable contribution of this kind was the stethoscope, which was invented about 1819 by Dr. Laennec in Paris, and by means of which the science and art of diagnosis were given an amazing impetus almost instantly. Possibly one cannot find in the whole history of modern invention any instrument so small and so inexpensive that has been so widely and definitely useful. A painful interest hangs to it in the fact that by means of his own invention, Laennec discovered that he himself was dying of tuberculosis of the lungs.

In July, 1820, a discovery of a vastly different character was made by Oersted in Copenhagen; the discovery that if a current of electricity be passed over or under a magnetic needle, the needle will be deflected in a direction and to a degree depending on the strength and direction of the current and the position of the conducting wire relatively to the needle. Now Laennec invented a simple and little instrument that began virtually perfect, and that exists today substantially as it started. Oersted did something equally important, that ultimately initiated intricate inventions of many kinds, and yet he did not really invent anything whatever. The importance of his discovery was recognized at once; so quickly, in fact, and by so many experimenters and inventors, that Oersted soon found himself in the extraordinary position of being left behind, in an art to which himself had almost unknowingly given birth! That some relation existed between magnetism and electricity had long been evident to physicists; but what that relation was they did not know until Oersted told them. They seized on his information with avidity, with results that the whole world knows now.

The first man heard from was Ampère, who communicated the results of his experiments in the new art to the Institute of France as early as September 18th. Almost immediately afterward, Arago discovered that, if a conducting wire were wrapped around iron wires, those iron wires became magnets and remained magnets as long as the electric current continued to pass. Thereupon, Arago made and announced his epoch-making invention, the electro-magnet. The influence of this invention on the subsequent history of the machine of civilization, it is hardly needful to point out.

The experiments of Oersted gave rise at once to much speculation as to the nature of the action between electric currents and magnets, and also to considerable experimental and mathematical research. As had been the case for many thousand years in other endeavors, speculation accomplished little, but experimental research accomplished much. By this time mathematics had been highly developed, not only as an abstract science but also as an aid to physical and chemical research. The man who attacked the problem in the most scientific manner was Ampère, who in consequence solved it in the following year, after a series of mathematically conducted experiments of the utmost originality and inductiveness. As a result in 1820, he showed that all the actions and reactions of magnets could be performed by coils of wire through which electric currents were passing, even if there was no iron within the coils:—but that they were more powerful, if iron were within. From this and kindred facts, which he developed by experiment—(especially the fact that electric currents act and react on each other as magnets do), he established a new science to which he gave the name electro-dynamics. In recognition of his contributions to electricity, the name given many years later to the unit of electric current was ampère.

In the following years, while pursuing a series of investigations into the new science, Faraday invented the first electro-magnetic machines. In the first machine, a magnet floating in mercury was made to revolve continuously around a central conducting wire through which an electric current was passing; in the second a conductor was made to revolve continuously around a fixed magnet; in a third machine, a magnet so mounted on a longitudinal axis that an electric current could be made to pass from one pole half way to the other pole, and then out, would revolve continuously as long as the electric current was made to pass. Faraday invented the first machines that converted the energy of the electric current into mechanical motion; though Oersted was the first who merely effected the conversion. It can hardly be said that Oersted invented a machine; but Faraday certainly did.

The first utilization of Oersted's discovery in a concrete and practically usable device was the galvanometer, invented by Schweigger in 1820. It was a brilliant invention, and solved perfectly the important problem of measuring accurately the strength of an electric current. The apparatus consisted merely of a means of multiplying the effect of the deflecting current by winding the conductor into a coil, the magnetic needle being within the coil. The galvanometer (named after Galvani) was an invention of the utmost value, and it is in use to this day, though in many modified forms. When one realizes how obvious a utilization of Oersted's discovery the galvanometer was, and that Schweigger did not invent it until two years later, he wonders why Oersted himself did not invent it. But the history of invention is full of such cases and of cases still more amazing. Why did the world wait several thousand years before Wise invented the metal pen? Why are we not now inventing a great many more things than we are? Nature is holding out suggestions for inventions to us by the million, but we do not see them.

In the year before Schweigger's invention, in 1821, the important discovery had been made by Seebeck in Berlin, that if two different metals are joined at their ends, and one junction be raised to a higher temperature than the other, a current of electricity will be generated, the strength of which will vary with the metals employed and the difference in temperature of the junctions. The discovery was soon utilized in Nobili's invention of the thermopile in which the current was increased by employing several layers of dissimilar metals (say antimony and bismuth) in series with each other. The main use of the thermopile has been in scientific investigations, especially in the science of heat.