In the same year, 1847, the time-lock was invented by Savage. This invention was in the class with the gun and gun-cotton, in the sense that it enhanced the self-protectiveness of the Machine. It did not enhance its self-protectiveness against a few great, open, external foes, however, but against a myriad of small, secret, internal foes. The Machine is very expensive to maintain in operation, and so is every one of the little mechanisms of which it is composed. And each one of these little mechanisms, each bank, its business corporation, each company, each department store, each little shop, requires that its money be kept safe from the burglar and the pilferer. Inasmuch as the time-lock assists in doing this, the time-lock has been a valuable contribution to the Machine, and has exerted a good influence on history since it was invented.
In the same year, 1847, R. M. Hoe invented his great printing press, that could make 20,000 impressions per hour. As it was a long step forward in the improvement of printing, this invention deserved the applause which it received; and the inventor deserved the financial reward which he received.
In 1848, Dennison invented a machine for making matches. This was a most useful contribution; but one is inclined to wonder why twenty years elapsed between the invention of matches and the invention of a machine for making them. Inventing was not going ahead so fast then as it is now. Surely, no such interval is allowed to pass unutilized, in the present inventing days.
In 1849, the "interrupted thread" screw, for use in closing the breeches of guns was invented. Many men have claimed the honor of this invention. Regardless of who the particular inventor was, the invention itself must be regarded as one of a very high order, from the standpoints of originality, constructiveness and usefulness. Though the screw itself was a very old contrivance, the idea of cutting a long slot lengthwise, so that the screw could be pushed forward quickly without the slow process of continuously turning it around, yet so arranged that the screw could be turned when near the end of its travel, and the force-gaining power of the screw-thread thus secured, seems to have been entirely new. Certainly the idea was original and brilliant and useful. To develop the idea into a concrete plan was not difficult, and neither was it difficult to carry the concrete plan into execution. This invention falls into the happy class of which the stethoscope is typical, in which the idea originally conceived was so perfect, that little else was needed. The main use of this invention has been that for which it was first intended, to close the breeches of guns. It is used in most of the navies and armies. Its principal rival is the famous sliding breech-block of Krupp.
In 1849, came an invention in the gun class, the magazine gun, made by Walter Hunt. This invention also seems to fulfil all the requirements of a real invention, in originality of conception, constructiveness of development and ultimate usefulness. But in this case, the original idea can hardly be declared as brilliant and spectacular as that of the "interrupted thread"; and certainly the labor of developing it was incomparably greater. The author feels the temptation of declaring that the more brilliant and valuable a conception is, the less will be the difficulty of developing it. He refuses to declare it, however, realizing that it would not be wholly true; and yet he wishes to point out that if a conception be wholly erroneous, it cannot be developed into any concrete plan whatever; and that many of the most brilliant conceptions, such as the fist-hammer, the flute, the telescope, the telegraph and the telephone were very easily developed into forms sufficiently concrete to make them practically usable. An idea itself is an extremely simple thing, even if it be developed ultimately into a highly complex machine. The idea of the steam engine, for instance, the idea which Hero conceived was, of itself, extremely simple; but see into what complex forms it has been developed! The original idea of Hero was easily developed into "Hero's engine." The improvements that have been made upon it have been the developments of separate ideas that were conceived later. Not one of these ideas has been nearly so brilliant as Hero's, and few of them have been so easily developed.
In 1849, Bourdon invented the steam pressure gauge that still bears his name, and made a contribution of distinct and permanent value, by which ability to keep track of the steam pressure in boilers was increased, and safety from explosion increased proportionately. In the same year, Sir David Brewster invented his lenticular stereoscope. In this beautiful instrument two separate pictures of the same object are put on one card, one picture showing the object as it would look to the left eye from a given distance, and the other picture showing the object as it would look to the right eye. The two eyes of an observer look at the two pictures through the two halves of two convex lenses, that are so shaped that the two pictures are seen as one picture, but so superposed as to represent the object in relief, as the actual object appears to the two eyes. Like the kaleidoscope, this later product of Sir David Brewster's brilliant imagination has had little influence thus far, except possibly to lead the way toward stereo-photography and the stereopticon: but it seems hardly probable that an important field will not be found some day for an invention so suggestive.
In the same year, Hibbert made an important improvement on the knitting machine, and Corliss invented his famous engine cut-off, which vastly economized fuel. Neither invention was especially novel or brilliant, but both were highly practical and useful contributions to the improvement of the Machine. In the same year also came Worm's improvement on the printing press, that concerned the making of "turtles" which held type in a curved shape, so that they could be secured to the cylinder of the press.
In 1850, Scott Archer succeeded in using collodion to fix silver salts on the surface of glass plates in photography. He cannot be credited with the basic invention, because the idea of doing this had been suggested long before. The invention made an important contribution to the growing art of photography, mainly by supplying a stepping stone for further advances. In the same year, an important improvement was made in watch-making by inventing a watch-making machine. This was one of the first of those distinctly American inventions, by which machine-work replaced hand-work, with great increase in speed of production and lessening of cost, but without decrease in accuracy of workmanship.
The influence of this invention has escaped the notice of many of us, for the reason that it has spread so gradually, and has been of such a character as to fail to strike the imagination from its lack of spectacularity. But the idea of what we now call "quantity production" has spread to all the fields of the manufacturing world, and is the basis of much of the enormous industrial progress of the last half century. It is rendered possible mainly by making the machinery automatic, or nearly so. Without such exaggeration, America may justly claim the contribution of automaticity to the Machine of Civilization.
In 1851, Dr. Charles G. Page produced the first electric locomotive. Like many pioneers, it did not achieve practical success itself, but it supplied a stepping stone to further progress. In the same year, Seymour produced his self-rakers for harvesters, and Gorrie invented the ice-making machine. Two more important inventions were the ophthalmoscope, invented by Helmholtz, and the "Ruhmkorff coil," invented by the man whose name still clings to it.