Why cannot some one invent a device that will automatically regulate our intake valves? Such an invention would prevent us from eating too much, drinking too much, and smoking too much, and also from eating, drinking and smoking things detrimental to the machine, and injurious to our happiness; and even from taking in sights and sounds and thoughts of an unhealthful kind. This might be followed by another invention that would regulate our outgo valves, and put a brake on our speech, our ambition, our acquisitiveness, etc. But would not these take from us our God-granted free will? Yes, in great measure. But such is the effect of the Machine of Civilization. The primeval savage lived—(and the primeval savage still lives) in a condition of almost perfect liberty, as do the beasts that perish: but in the vast Machine of Civilization, we are only tiny parts. Each of us, it is true, has a little freedom of motion; but it is like the "lost motion" of a loose part in a crude or ill-constructed engine; and it seems to be growing smaller and smaller, as the Machine grows larger and improves.


[CHAPTER XIII]
THE CONQUEST OF THE ETHER—MOVING PICTURES—RISE OF JAPAN AND THE UNITED STATES

In 1884, Mergenthaler invented the linotype machine, in which matrixes for casting different type were moved successively into line, by pressing the corresponding alphabetically marked keys on a keyboard, and the whole line then moved to the casting mechanism and cast. This was an invention of the most clean-cut and perfect character; following clearly the processes of conception, development and production, and resulting in an improvement in the art of printing of a most important kind. Few inventions embody such a brilliant and original conception, such excellent constructiveness and such a useful product. So perfect was the result, and so clear was the conception that preceded it, that one marvels that some one had not invented it before. Why make matrixes for type, then cast the type, then space the type individually one after the other in line, and then stereotype them as they stand in line, when it is so much easier simply to place the matrixes in line and then stereotype the matrixes? The influence of this invention is of the same kind as the influence of the invention of the art of printing from movable type, because it is an improvement in that art. All over the world this invention, or inventions suggested by it, are used by the newspaper and book publishers, with the result that the quickness and accuracy of printing are much enhanced, and the work of co-operating the parts of the Machine thereby facilitated.

In the same year Marble increased the safety of the bicycle by his invention of the rear-driven chain, and Schultz invented his chrome process of tanning leather. Both of these were important in their way; but in 1885 Cowles made a more important invention, that of reducing (and thereby producing) the metal aluminum from its oxide, called alumina, the chief constituent of clay. The usefulness of aluminum lies largely in its extreme lightness, and in the fact that when combined with certain metals, notably copper, it forms important alloys.

During the same year, Welsbach invented his gas mantle, a valuable contribution to gas-lighting, and Bowers invented his hydraulic dredge, in which the act of dredging a channel or harbor was accomplished by hydraulic power. In the same year, Van Depoele invented a practical contact appliance for use in taking off the current from the overhead wires of electric railways. In 1886, Bell and Tainter invented the graphophone, an important improvement on the phonograph, and Elihu Thompson invented electric welding. This was an epochal invention, inaugurating as it did an entirely new art, and contributing enormously not only to the quickness of welding, but to its accuracy and strength. Many improvements have been made on this invention during the past few years, that have increased its scope and value. Many articles are now made in one piece that is really solid, though composed of several parts: for those parts are so firmly welded together that the joints cannot be seen and are as strong as any other parts.

In the same year, Matteson invented his combined harvester and thresher. In the following year, Prescott invented his band wood saw, and McArthur and Forrest invented their process of extracting metals (especially gold and silver) from ores by the use of a solution of potassium cyanide, and greatly cheapened the work. In the same year, Tesla invented his system of multi-phase electric currents, which rendered possible the economical transmission of power over long distances, of which the first use was made in transmitting power derived from Niagara Falls. This was another invention of the first order of merit in brilliancy and originality of conception, excellence of constructiveness and usefulness of result. Its value has been only dimly appreciated by most men, because the invention does not stand continually before our eyes, like the telephone and electric light; for it cannot be seen at all. It is not a machine or instrument (in the common use of those words) but a system, actually invisible of itself, that governs the method of design, construction and operation of the visible dynamos, motors and conductors. Like the germ of life, we see not it, but only its manifestations.

In the same year, Welsbach brought out an improvement on his incandescent gas-mantle that was valuable for cases in which a brilliant illumination was desired, that leaped almost immediately into public favor. In the following year of 1888, Sprague made the first installation of street electric railways in the United States, and the first in the world in which the conditions of operating were difficult. The success of Sprague's system was largely due to the excellence of Sprague's electric motor, which had the curious property of being designed on principles which the scientific men of those days declared to be wholly wrong. Sprague's reputation rests mainly on his electric railway; but, from the standpoint of the inventor, Sprague's invention of his electric motor was of a higher order than that of his electric railway.

In 1888, Harvey invented his process of making armor-plate. In the same year, Eastman and Walker invented the kodak camera, in which the novelty consisted mainly of a continuous roll of sensitized film, on which photographs could be successively made; and De Chardonnet invented his process of manufacturing artificial silk from threads that were made by forcing collodion through very small holes. These were important in fact; but in comparison with the discoveries in the realm of the actual ether made in the same year by Hertz, they were quite trifling.