It was in the fitness of things that the man who was considered the greatest since Newton should be buried in Westminster Abbey, and that the mortal remains of Lord Kelvin should find a resting-place next to the grave of the genius who thought out the Principia and discovered the gravitational law which governs the planetary as well as the stellar universe.

If asked to say what impressed me most in Lord Kelvin, I would mention the cordial manner in which he welcomed those who sought advice; the encouragement which he held out to students; his absolute devotion to truth; his fair-mindedness and candor; his reverence in dealing with the problems of the soul and the destiny of man; and the uniform, tranquil happiness of his life, due, under God, to his profound religious belief and noble Christian life.

A man of strong convictions, Kelvin did not, however, wear his religion on his sleeve, but treasured it in the depths of his heart, where it was never disturbed by the tossing and ever-changing wave-forms of individual opinion. He quietly but uniformly maintained that physical science demands the existence and action of creative power; and he did not shrink from affirming this conviction whenever circumstances seemed to require it, as was the case on the memorable occasion of his Presidential address to the members of the British Association in 1871. In concluding that brilliant discourse, he said: "But strong, overpowering proofs of intelligent and benevolent design lie all around us; and if ever perplexities, whether metaphysical or scientific, turn us away from them for a time, they come back upon us with irresistible force, showing to us, through nature, the influence of free will, and teaching us that all living beings depend on one ever-acting Creator and Ruler."

Once when particularly disgusted with the materialistic views of those who, while denying the existence of a Creator, attributed the wonders of nature, animate and inanimate, to the potency of a fortuitous concourse of atoms, he wrote to Liebig, asking him if a leaf or a flower could be formed or even made grow by chemical forces, to which he received the significant reply from the famous chemist of Giessen: "I would more readily believe that a book on chemistry or on botany could grow out of dead matter by chemical processes."

We have already referred to the custom which obtained in the University of Glasgow, of beginning the daily sessions by invoking the blessing of heaven on the work about to be undertaken. Having liberty in the matter of choice, Prof. Thomson selected for this purpose a prayer from the morning service of the Church of England, which reads: "O Lord, our heavenly Father, almighty and everlasting God, who hast safely brought us to the beginning of this day; defend us in the same with Thy mighty power; and grant that this day we fall into no sin, neither run into any kind of danger; but that all our doings may be ordered by Thy governance, to do always what is righteous in Thy sight; through Jesus Christ, our Lord, Amen."

Academical honors were showered upon Lord Kelvin by seats of learning, ancient and modern; he was a D. C. L. Oxford, LL. D. Cambridge, and a D. Sc. London; he was President of the Royal Society from 1890 to 1895; President of the British Association in 1871; Knight of the Prussian Order Pour le Mérite, and Foreign Associate of the Institut de France.

His published works include a "Treatise on Natural Philosophy," 2 vols., written in collaboration with Prof. Tait, of Edinburgh (the two authors were often referred to as T and T'); "Contributions to Electrostatics and Magnetism"; "Collected mathematical and physical Papers," 3 vols.; "Popular Lectures and Addresses," 3 vols.; and the "Baltimore Lectures." These, as well as the instruments which he devised for navigation, for the finest work of the laboratory, as well as for the commercial measurement of current, potential, and energy, form a monument to Lord Kelvin that will be aere perennius.

Brother Potamian.

FOOTNOTES:

[35] Water was decomposed in 1789 by Van Troostwijk and Cuthberson, by means of sparks from an electrical machine. Prof. Ostwald considers this the first instance of the decomposition of a chemical compound by electricity.