History shows that scientific theories have their periods of infancy, maturity and decay. When they have served their purpose, like the scaffolding of a building, they are removed from sight and stored away, say, in a limbo of discarded philosophy, for use of the historian of science or of the metaphysician writing on the nature of human knowledge. Such was the fate of Gilbert's "effluvium" theory of electricity, of the fluid theories of Dufay and Franklin, and the ether-strain theory of recent years. "Each physical hypothesis," says Prof. Fleming, "serves as a lamp to conduct us a certain stage in the journey. It illumines a limited portion of the path, throwing light before and behind for some distance; but it has to be discarded and exchanged at intervals because it has become exhausted and because its work is done."

It is a little surprising that the phenomenon of electrical repulsion should have escaped the attention of one so skilled in experimentation as Gilbert. Yet such was the case; and Gilbert even went so far as to deny its very existence, saying, "Electrics attract objects of every kind; they never repel." This error reminds one of Gilbert's own saying that "Men of acute intelligence, without actual knowledge of facts, and in the absence of experiment, easily slip and err." Just twenty-nine years after Gilbert had penned this aphorism, there appeared in Ferrara an extensive work on electric and magnetic philosophy, by the Jesuit Cabeo, in which this electrical repulsion was recognized and described. Having rubbed one of his electrics, Cabeo noticed that it attracted grains of dust at first and afterward repelled them suddenly and violently. In the case of threads, hairs or filaments of any kind, he observed that they quivered a little before being flung away like sawdust. This self-repelling property of electricity, described in the year 1629, opened up a new field of inquiry, which was actively explored by a number of brilliant electricians in England and on the Continent.

This was especially the case after the building of the first frictional machine by Otto von Guericke in 1672. The burgomaster of Magdeburg had already acquired European fame by the original and sensational experiments on atmospheric pressure which he made in presence of the Emperor and his nobles in solemn diet assembled (1651). Von Guericke seems to have been of a mind with Gilbert concerning writers on natural science who treat their subjects "esoterically, miracle-mongeringly, abstrusely, reconditely, mystically"; for he affirms that "oratory, elegance of diction or skill in disputation avails nothing in the field of natural science."

Von Guericke's machine consisted of a ball of sulphur, with the hand of the operator or assistant as rubber. Some years later, the sulphur ball was replaced by Newton (some say Hauksbee) by a glass globe, which, in turn, was exchanged for a glass cylinder by Gordon, a Scotch Benedictine, who was Professor of natural philosophy in the University of Erfurt. In 1755, Martin de Planta, of Sus, in Switzerland, constructed a plate-machine which was subsequently improved by Ramsden of London. The frictional machine, as it was rightly called, has been superseded by the influence machine, a type of static generator which is at once efficient, reliable and easy of operation. The best known form for laboratory use is that of Wimshurst (1832-1903), of London.

Andrew Gordon, the Scotch Benedictine to whom reference has just been made, was a man of an inventive turn of mind. Besides, the cylindrical electric machine which he constructed, he devised several ingenious pieces of electrical apparatus, among which are the electric chimes usually ascribed to Franklin. They are fully described in his Versuch einer Erklärung der Electricität, published in 1745. On page 38, he says that he was led to try an electrical method of ringing bells; and then adds: "For this purpose I placed two small wine-glasses near each other, one of which stood on an electrified board, while the other, placed at a distance of an inch from it, was connected with the ground. Between the two, I suspended a little clapper by a silk thread, which clapper was attracted by the electrified glass and then repelled to the grounded one, giving rise to a sound as it struck each glass. As the clapper adhered somewhat to the glasses, the effect on the whole was not agreeable. I, therefore, substituted two small metallic gongs suspended one from an electrified conductor and the other from a grounded rod, the gongs being on the same level and one inch apart. When the clapper was lowered and adjusted, it moved at once to the electrified bell, from which it was driven over to the other, and kept on moving to and fro, striking the bell each time with pleasing effect until the electrified bell lost its charge." In the illustration, a is connected with the electrified conductor; b is the insulated clapper; c the grounded gong.

Fig. 10
Gordon's Electric Chimes, 1745

Gordon's book was published in Erfurt in 1745, while the year 1752 is that in which Franklin applied the chimes to his experimental rod to apprise him of the approach of an electric storm, an application which was original and quite in keeping with the practical turn of mind that characterized our journeyman-printer, philosopher and statesman. Unquestionably, Franklin had all the ingenuity and constructive ability needed to make such an appliance; but there is no evidence that he actually invented it. Though Franklin neither claimed nor disclaimed the chimes as his own, all his admirers would have preferred less reticence on his part when the discoveries and inventions of contemporary workers in the electrical field were concerned. He had attained sufficient eminence to permit him to look appreciatingly and encouragingly on the efforts of others.

Gordon also invented a toy electric motor in which rotation was effected by the reaction of electrified air-particles escaping from a number of sharp points. One of these motors consisted of a star of light rays cut from a sheet of tin and pivoted at the center, with the ends of the rays slightly bent aside and all in the same direction. When electrified, Gordon noticed that the star required no extraneous help to set it in motion. It was a self-starting electric-motor. In the dark, the points were tipped with light, and as they revolved traced out a luminous circle which "could neither be blown out nor decreased."