As early as 1733, the refined and tactful Dufay, in France, showed by numerous experiments on woods, stones, books, oranges and metals that all solid bodies were susceptible of electrification. This was a notable advance which swept away Gilbert's classification of bodies into electrics and non-electrics. The French physicist soon drew from his observations the conclusion that electrification produced by friction is of two kinds, to which he applied the terms vitreous and resinous, the former being developed when glass is rubbed with silk and the latter when amber or common sealing-wax is rubbed with flannel. He noticed, too, that silk strings repelled each other when both were touched either with excited glass or sealing-wax; but that they attracted each other when touched one with glass and the other with sealing-wax. From these observations, he deduced the electrostatic laws, that similarly electrified bodies attract while dissimilarly electrified bodies repel each other.

The law of distance was discovered later by Coulomb, who, in 1785, showed that the law of repulsion as well as of attraction between two electrified particles varies inversely as the square of the distance. In the year 1750, the law of the inverse square for magnets was stated by John Michell, who expressed it by saying that the "attraction and repulsion decrease as the square of the distance from the respective poles increases." Michell was fourth wrangler of his year (1748-9), Fellow of Queen's College, Cambridge, and inventor of the torsion balance, which, however, he did not live to use; but which, in the hands of Cavendish, yielded important results on the mean density of the earth. Coulomb probably re-invented the "balance" and applied the practical, laboratory instrument which he made it, to the study of the quantitative laws of electricity and magnetism.

To observe and correlate phenomena is the special work of the physicist; to speculate on ultimate causes is the privilege of the philosopher. Dufay was both. The theory which he offered was a simple one, even if untrue to nature. It was a good working hypothesis for the time being.

According to this theory, there are two distinct, independent electrical fluids mutually attractive but self-repelling. With that postulate, Dufay was able to offer a plausible explanation of a great many phenomena that puzzled the electricians of the time.

Franklin, however, held a different view; rejecting the dual nature of electricity, he propounded his one-fluid theory, which was found equally capable of explaining electrical phenomena. A body having an excess of the fluid was said to be positively charged, while one with a deficit was said to be negatively charged. The sign plus was used in one case and the sign minus in the other; and just as two algebraical quantities of equal magnitude but opposite sign give zero when added together, so a conductor to which equal quantities of positive and negative electricity would be given would be in the neutral state. The Franklinian theory was welcomed in England, Germany and Italy, but it met with opposition in France from the brilliant Abbé Nollet and the followers of Dufay.

Each of the rival theories affords a mental conception of the forces in play and also a consistent explanation of the resulting phenomena. Their simplicity, and, at the same time, the comprehensiveness of explanation which they afford, will continue to give them a place in our text-books for many years to come.

Efforts are being made to apply the electronic theory to the various phenomena of electrostatics, the electron being the smallest particle of electricity that can have separate, individual existence. It is many times smaller than the hydrogen atom, the smallest of chemical atoms, and it possesses all the properties of negative electricity. By the loss of one or more electrons, a body becomes positively electrified, whereas by the acquisition of one or more electrons it becomes negatively electrified. The electron at rest gives rise to the phenomena of electrostatics; in motion, it gives rise to electrical currents, electromagnetism and electric radiation.

We do not know what led Franklin to call positive the electrification of glass when rubbed with silk, and negative that of sealing-wax when rubbed with flannel. If he meant to imply that positive is the more important of the two, he erred, for many reasons can be given to show the preponderating influence of negative electricity; but it is too late now to change the terminology.

If asked to point out differences between the physical effects of positive and negative electrification, we would refer to the positive brush, which is finer and much more developed than the negative; to the Wimshurst machine, with its positive brushes on one side and negative "beads" on the other; to the positive charge acquired by a clean plate of zinc when exposed to ultraviolet light; to the ordinary vacuum tube in which there is a violet glow at the cathode end or negative terminal; to Crookes's tubes, X-ray tubes and other high vacuum tubes, in which electrified particles, Kelvin's molecular torrent, are shot out from the negative electrode with great velocity; and to arc-lamps using a direct current in which the plus carbon is hollowed out crater-like, has the higher temperature and wastes away twice as fast as the negative.

The year 1746 is an annus mirabilis in the history of electricity, for it was in the January of that year that an attempt to electrify water by Musschenbroek, of Leyden, led to the discovery of the principle of the electrostatic condenser. Whatever may be thought of the claim for priority put forward in favor of Dean von Kleist, of Cammin in Pomerania, or of Cunæus, of Leyden, it is certain that the discovery became known throughout Europe by the startling announcement and sensational description given of it by Musschenbroek, a renowned professor of a renowned university. He was not only surprised but terror-stricken by the effect of the electric energy which he had unconsciously stored up in his little phial; for after telling his French friend Réaumur, the physicist, that he felt the commotion in his arms, shoulders and chest, he added that he would not take another shock for the whole kingdom of France! A resolution destined to be broken, like so many others before and since.