How much Maxwell's work was appreciated across the channel, may be realized from what Poincaré said: "So sure did the results of his (Maxwell's) theory appear as worked out for the deepest problems, that a feeling of distrust and suspicion is likely to be mingled with our admiration for his magnificent work. It is only after prolonged study and at the cost of many efforts that this feeling is dissipated."

Maxwell's explanation of electricity is that it is a strain or stress in the ether, that it is a condition or mode, and not a substance. One distinguished foreign contemporary who had read Maxwell's books with the greatest interest, declared that he could not be quite satisfied, since nowhere did he find what a charge of electricity is, though he seemed to find satisfactory information with regard to everything else. Maxwell realized, however, the limitations of his speculation very well, and hesitated, above all, to bind his mathematical conclusions to statements that might prove eventually only surmises founded on insufficient information from the standpoint of observation. Even when he gave his explanation, he did not insist on it as absolute, but, as pointed out by Poincaré, discussed it only as a possibility. The French scientist said: "Maxwell does not give a mechanical explanation of electricity and magnetism; he is only concerned to show that such an explanation is possible."

Maxwell thoroughly believed in having a hobby as well as his regular work, and during the time while he was devoting himself to the mathematical explanation of electricity he turned for recreation to certain problems in physics, in physiology and psychology, relating to color. He worked almost as great a revolution in our knowledge of color-vision as in any other subject that he took up. Principal Garnett has condensed so well what Clerk Maxwell accomplished in the matter of color-vision, in his sketch of him in "The Heroes of Science,"[33] that I prefer to quote his explanation. He says:

"It has been stated that Thomas Young propounded a theory of color-vision which assumes that there exists three separate color sensations, corresponding to red, green and violet, each having its own special organs, the excitement of which causes the perception of the corresponding color, other colors being due to the excitement of two or more of these simple sensations in different proportions. Maxwell adopted blue instead of violet for the third sensation, and showed that, if a particular red, green, and blue were selected and placed at the angular points of an equilateral triangle, the colors formed by mixing them being arranged as in Young's diagram, all the shades of the spectrum would be ranged along the sides of this triangle, the center being neutral grey. For the mixing of colored lights, he at first employed the color top; but instead of painting circles with colored sectors, the angles of which could not be changed, he used circular discs of colored paper slit along one radius. Any number of such discs can be combined so that each shows a sector at the top, and the angle of each sector can be varied at will by sliding the corresponding disc between the others. Maxwell used discs of two different sizes, the small discs being placed above the larger on the same pivot, so that one set forked a central circle and the other set a ring surrounding it. He found that, with discs of five different colors, of which one might be white and another black, it was always possible to combine them so that the inner circle and the outer ring exactly matched. From this he showed that there could be only three conditions to be satisfied in the eye, for two conditions were necessitated by the nature of the top, since the smaller sectors must exactly fill the circle and so must the larger. Maxwell's experiments, therefore, confirmed, in general, Young's theory. They showed, however, that the relative delicacy of the several color sensations is different in different eyes, for the arrangement which produced an exact match in the case of one observer, had to be modified for another; but this difference of delicacy proved to be very conspicuous in color-blind persons, for in most of the cases of color-blindness examined by Maxwell the red sensation was completely absent, so that only two conditions were required by color-blind eyes, and a match could therefore always be made in such cases with four discs only. Holmgren has since discovered cases of color-blindness in which the violet sensation is absent. He agrees with Young in making the third sensation correspond to violet rather than blue. Maxwell explained the fact that persons color-blind to the red divide colors into blues and yellows, by the consideration that, although yellow is a complex sensation corresponding to a mixture of red and green, yet in nature, yellow tints are so much brighter than greens, that they excite the green sensation more than green objects themselves can do; and hence greens and yellows are called yellow by such color-blind persons, though their perception of yellow is really the same as perception of green by normal eyes. Later on, by a combination of adjustable slits, prisms, and lenses arranged in a 'color box,' Maxwell succeeded in mixing, in any desired proportions, the light from any three portions of the spectrum, so that he could deal with pure spectral colors instead of the complex combinations of differently colored lights afforded by colored papers. From these experiments, it appears that no ray of the solar spectrum can affect one color sensation alone, so that there are no colors in nature so pure as to correspond to the pure simple sensations, and the colors occupying the angular points of Maxwell's diagram affect all three color sensations, though they influence two of them to a much smaller extent than the third. A particular color in the spectrum corresponds to light which, according to the undulatory theory, physically consists of waves, all of the same period; but it may affect all three of the color sensations of a normal eye, though in different proportions. Thus yellow-light of a given wave-length affects the red and green sensations considerably and the blue (or violet) slightly, and the same effect may be produced by various mixtures of red or orange and green."

For his researches on the perception of color, the Royal Society awarded Clerk Maxwell the Rumford Medal in 1860.

Besides this more or less theoretic work, however, Maxwell made some interesting and important discoveries and inventions in optics. For instance, he noted the great differences that exist in the eyes of dark and fair complexions to different colors when the light falls upon the center of the yellow spot, the so-called fovea centralis, or central pit of the retina. His researches with regard to this led him to the discovery that this portion of the retina is largely lacking in sensibility to blue light. He was able to demonstrate this by his experiment of looking through a glass vessel containing a solution of chrome alum, when the central portion of the field of vision appears of a light red color for the first second or two. He was also the inventor of an ingenious optical apparatus, a real image stereoscope. A still more important discovery was that of the double refraction which is produced for the time in viscous liquids when they are stirred and their motion is not as yet stopped. Maxwell showed that Canada balsam, for instance, when stirred, acquired a distinct power of double refraction, which it retained so long as the stress in the fluid produced by stirring remained.

Other departments of physics were not neglected. For instance, one of his greatest investigations was that on the kinetic theory of gases. Geniuses had been working before him on this line, for, as pointed out by Professor Tait, this theory owed its origin to Daniel Bernoulli, the greatest mathematician of the eighteenth century, and had been developed by the successful labors of Herapath, Joule and, above all, of Clausius. The work of these men put the general accuracy of the theory beyond all doubt and led to its very general acceptance, yet the details of it needed to be elaborated before it could become definitely scientific. Its greatest developments are due to Maxwell, and in this field Maxwell appeared as an experimenter on the laws of gaseous friction as well as a mathematician. His work with regard to color had showed his ingenuity as an experimentalist, and this is still further illustrated by his carefully arranged experiments on gases. Indeed, his work in this line makes it very clear that nothing was too difficult for him, and that anything that he turned his hand to in the field of science he was sure to accomplish with eminent success.

It was not only his scientific monographs, however, that indicate how great a scientist Clerk Maxwell was, but his text-books, even those of more or less elementary character, which he wrote bring out this same idea. He wrote, for instance, an admirable text-book on the theory of heat, which went through many editions. Students of the subject, even those who were not far advanced, found it clear and easier of study than many a less exhaustive work. He also wrote an elementary treatise on matter and motion, which has gone through several editions. One might think that so small a work would scarcely interest him enough to tempt him to put forth his powers at their best, and that at most it would be a conventional condensation of previous knowledge. Prof. Tait, who surely must be taken as a good judge in the matter, says that "even this, like his other and larger works, is full of valuable material worthy of the most attentive perusal not of students alone, but of the very foremost scientific men."

One of the characteristic traits of Maxwell was his desire to impart information to others. This extended not only to his academic relations, but, above all, to the working classes, who might have few opportunities for the obtaining of the information that was so interesting with regard to natural subjects. Everywhere that he held an academic post in his life, he gave lectures to the workmen. He was an extremely interesting talker, and one of his friends said of him: "I do believe there is not a single subject on which he cannot talk, and talk well, too, displaying always the most curious and out-of-the-way information." One of his private tutors said of him: "It is not possible for Maxwell to think incorrectly on physical subjects." It is easy to understand, then, how much his lectures to the working people at Aberdeen, at Edinburgh, and at Kings College, London, as well as at Cambridge, meant for them. If men like Maxwell would take up the popularization of science generally, then there would be much less opprobrium attached to the expression popular science than there has been only too often in the past, and is even at present.

Just as Maxwell set himself to the solution of the most difficult problems in physics, so he did not hesitate to give himself also to the discussion of problems in ethics. Here his power of penetration, the rigid logic of his mind, and his power to follow out conclusions to their ultimate significance, were quite as manifest as any scientific writing. It is almost the rule to find that scientists either ignore the great problems of man's place in nature and his destiny, or treat them very superficially. Agnosticism had become the fad of the moment, and was just beginning to make itself felt as a fashion in thinking when Clerk Maxwell was doing his great work. Maxwell was not an agnostic in science, and because he could not solve all the problems that came to him with regard to electricity and the constitution of matter, this did not keep him from setting himself to the task of seeing what should be his thoughts with regard to these subjects. He had none of the agnostic's feelings with regard to them, that since we cannot know all about them definitely and absolutely, therefore it is not worth while studying them at all. Had Maxwell been tempted to any such line of thought, we would have missed some of the most helpful scientific speculations and suggestions that have ever been made.