FIG. 17.–CROSS-SECTION OF A TYPICAL NEW ENGLAND DAM.

The board of experts made numerous tests by means of borings into the Croton Valley dams to determine the slope of saturation. The hydraulic laboratory of Cornell University also made tests of the permeability of several samples of materials taken from pits. All the materials examined were found to be permeable and when exposed to water to disintegrate and assume a flat slope, the surface of which was described as “slimy.”

Pipe wells were driven at different places into the dams and the line of saturation was determined by noting the elevations at which the water stood in them. In all the dams the entire bank on the water side of the core wall appeared to be completely saturated. Water was also found to be standing in the embankment on the down-stream side of the core wall. The extent of saturation of the outer bank varied greatly, due to the difference in materials, the care taken in building them, and their ages. [Fig. 19] gives the average slopes of saturation as determined by these borings.

The experts stated

that the slope of the surface of the saturation in the bank is determined by the solidity of the embankment: The more compact the material of which the bank is built, the steeper will be the slope of saturation.

As a result of their investigations, the experts were of the opinion that the slope of saturation in the best embankments made of the material found in the Croton Valley is about 35 ft. per 100 ft., and that with materials less carefully selected and placed the slope may be 20 ft. per 100 ft.

Further, that taking the loss of head in passing through the core wall, and the slope assumed by the plane of saturation, the maximum safe height of an earth dam with its top 20 ft. above water level in the reservoir and its outside slope 2 on 1, is 63 to 102.5 ft. This is a remarkable finding in view of the fact that the Titicus Dam, one of the Croton Valley dams examined, has a maximum height above bed rock of 110 ft. and has been in use seven years. This dam is not a fair example to cite in proof of their conclusion, because its effective head is only about 46 ft.[2]

BOG BROOK DAM.