"If that is the case," he said, "and if the passage of the current can be made visible or audible, there is no reason why intelligence cannot be transmitted instantaneously by electricity."

The company broke up, after a while, but Morse, filled with his great idea, went on deck, and at the end of an hour had jotted down in his notebook the first skeleton of the "Morse alphabet." Before he reached New York, he had made drawings and specifications of his invention, which he seems to have grasped clearly and completely from the first, although its details were worked out only by laborious thought. It was necessary for him to earn a living, and not until three years later was the first rude instrument completed. Two years more, and he had a short line in operation, but it was looked upon as a scientific toy constructed by an unfortunate dreamer. Finally, in 1838, Morse appeared before Congress, exhibited his invention and asked aid to construct an experimental line between Washington and Baltimore. He was laughed at, and for twelve years an extraordinary struggle ensued, Morse laboring to convince the world of the value of his invention, and the world scoffing at him. His own situation was forlorn in the extreme; for his painting was his only means of livelihood, and, absorbed as he was by his great invention, he found painting utterly impossible. His home was a single room in the fifth story of a building at the corner of Nassau and Beekman streets in New York City—a room which served as studio, workshop, parlor, kitchen and bedroom. There he labored and slept, using such money as he could earn for his experiments, and almost starving himself in consequence.

But at last the tide turned. He was appointed to a position in the University of the City of New York, which provided him with better means for experiment, and in 1843, again appeared before Congress. This time, he found some backers, and by a close vote, at the last hour of the session, an appropriation of $30,000 was made to enable him to construct a line between Washington and Baltimore. Wild with delight and enthusiasm, the inventor went to work, and on the twenty-fourth day of May, 1844, the first message flashed over the wire, "What hath God wrought!"

The wonder and amazement of the public can be better imagined than described. Morse offered to sell his invention to the government for the sum of $100,000, but the Postmaster General, a thickheaded individual named Cave Johnson, refused the offer, stating that in his opinion, no line would ever pay for the cost of operation!

It was inevitable that rival claimants for the honor of the invention should crop up on every side, but, after years of bitter litigation, Morse succeeded in defending his title, and honors began to pour in upon him. It is worth remarking that the Sultan of Turkey, supposedly the most benighted of all rulers, was the first monarch to acknowledge Morse as a public benefactor. That was in 1848; but the monarchs of Europe soon followed, and in 1858, a special congress was called by the Emperor of the French to devise some suitable testimonial to the great inventor. But perhaps the most fitting testimonial of all were the ceremonies at the unveiling of the Morse monument in New York City in 1871. Delegates were present from every state in the Union, and at the close of the reception, William Orton, president of the Western Union Telegraph Company, announced that the telegraph instrument before the audience was in connection with every other one of the ten thousand instruments in America, and that, beside every instrument an operator was waiting to receive a message. Then a young operator sent this message from the key: "Greeting and thanks to the telegraph fraternity throughout the world. Glory to God in the highest; on earth, peace, good-will to men." Then the venerable inventor, the personification of dignity, simplicity and kindliness, bent above the key, and sent out, "S. F. B. Morse." A storm of enthusiasm swept over the audience, and the scene will never be forgotten by any who took part in it. The proudest boast of many an old operator is that he received that message. Death came to the inventor a year later, and on the day of his funeral, every telegraph office throughout the land was draped in mourning.

Although to Morse belongs all the credit for the invention of the telegraph, it should, in justice to one man, be pointed out that it would have been impossible but for a discovery which preceded it—that of the electro-magnet. To Joseph Henry, the great physicist, first of Princeton, then of the Smithsonian Institution, this invention is chiefly due. We have already spoken of Professor Henry's work in science, but none of it was more important than his invention, in 1828, of the modern form of electro-magnet—a coil of silk-covered wire wound in a series of crossed layers around a soft iron core, and in 1831, he had used it to produce the ringing of a bell at a distance. It is this magnet which forms the basis of every telegraph instrument—is essential to it, and is the foundation of the entire electrical art. Let it be added to this great scientist's credit that he never sought to patent any of his inventions, giving them, as Franklin had done, free to all the world.

The struggle which Morse made to perfect and secure public recognition of his telegraph and the injustice shown Eli Whitney by the people of the South, were as nothing when compared with the trials of that most unfortunate of all inventors, Charles Goodyear, whose story is one of the most tragic in American annals. No one can read of his struggles without experiencing the deepest admiration for a man who, at the time, was regarded as a hopeless lunatic.

Charles Goodyear was born at New Haven, Connecticut, in 1800. While he was still a child, his father moved to Philadelphia and engaged in the hardware business, in which his son joined him, as soon as he was old enough to do so. But the panic of 1836 wiped the business out of existence, and Goodyear was forced to look around for some other means of livelihood. He had been interested for some time in the wonderful success of some newly-established India-rubber companies, and, out of curiosity, bought an India-rubber life-preserver. Upon examining it, he found a defect in the valve, and inventing an improvement in it, he went to New York with the intention of selling his improvement to the manufacturer. The manufacturer was impressed with the new device, but told Goodyear frankly that the whole India-rubber business of the country was on the verge of collapse, and indeed, the collapse came a few months later.

The trouble was that the goods which the rubber companies had been turning out were not durable. The use of rubber had begun about fifteen years before, first in France in the manufacture of garters and suspenders, and then in England where a manufacturer named Mackintosh made water-proof coats by spreading a layer of rubber between two layers of cloth. Then, in 1833, the Roxbury India-Rubber Company was organized in the United States, and manufactured an India-rubber cloth from which wagon-covers, caps, coats, and other articles were made. Its success was so great that other companies were organized and seemed on the highroad to fortune, when a sudden reverse came. For the heat of summer melted wagon-covers, caps and coats to sticky masses with an odor so offensive that they had to be buried. So the business collapsed, the various companies went into bankruptcy, and the very name of India-rubber came to be detested by producers and consumers alike.

It was at this time that Charles Goodyear appeared upon the scene—unfortunately enough for himself, but fortunately for humanity—and determined to discover some method by which rubber could be made to withstand the extremes of heat and cold. From that time until the close of his life, he devoted himself wholly to this work, in the face of such hardships and discouragements as few other men have ever experienced. He began his experiments at once, and finally hit upon magnesia as a substance which, mixed with rubber, seemed to give it lasting properties; but a month later, the mixture began to ferment and became as hard and brittle as glass.