In 1864, he presented to Harvard his herbarium of more than two hundred thousand specimens, and his botanical library. He remained in charge of the herbarium until his death, adding to it constantly, until it became one of the most complete in the world. His publications upon the subject of botany were numerous and of the highest order of scholarship, and long before his death he was recognized as the foremost botanist of the country.

Scarcely inferior to him in reputation was John Torrey. It was to Torrey that Gray owed his first lessons in botany, and if the pupil afterwards surpassed the master, it was because he was able to build on the foundations which the master laid. John Torrey, born in New York City in 1796, was the son of a Revolutionary soldier, and in early life determined to become a machinist, but afterwards studied medicine and began to practice in New York, taking up the study of botany as an avocation. He found the profession of medicine uncongenial, and finally abandoned it altogether for science, serving for many years as professor of chemistry and botany at the College of Physicians and Surgeons in New York City. The succeeding years brought him many honors, and saw many works of importance issue from his hands.

The progress of the last century in the various branches of science is an interesting study, and America has made no inconsiderable contributions to every one of them. In astronomy, six names are worthy of mention here. The first of these, John William Draper, was noted for his devotion to many other lines of science, especially to photography, and was the first person in the world to take a photograph of a human being. His service to astronomy was in the application of photography to that science. In 1840, he took the first photograph ever made of the moon, and a few years later published his "Production of Light by Heat," an early and exceedingly important contribution to the subject of spectrum analysis.

His work in astronomy and more especially in physics was carried on most worthily by his son, Henry Draper, who, at his home at Hastings-on-the-Hudson, built himself an observatory, mounting in it a reflecting telescope, which he also made. His description of the processes of grinding, polishing, silvering, testing and mounting it has remained the standard work on the subject. With this telescope he took a photograph of the moon which remains one of the best that has ever been made. Among his other noteworthy achievements were his spectrum photographs of 1872 and 1873, and in 1880 his photograph of the great nebula in Orion, the first photograph of a nebula ever secured. Perhaps the most brilliant discovery ever made in physical science by an American was that by Draper in 1877, when he demonstrated the presence of oxygen in the sun so conclusively that it could not be disputed. It was a sort of tour de force that took the scientific world by surprise and gained its author the widest recognition.

The services of Lewis Morris Rutherford to astronomy resembled in many ways those of Draper. Starting in life as a lawyer, he abandoned that profession at the age of thirty-three to devote his whole time to science, principally to the perfection of astronomical photography and spectrum analysis. The service which photography has rendered to astronomy can scarcely be overestimated, and these pioneers in the art were laying the foundations for its recent wonderful developments. He was the first to attempt to classify the stars according to their spectra, and invented a number of instruments of the greatest service in star photography. All in all, it is doubtful if anyone added more to the development of this branch of the science than did he.

Very different from the services of these men were those rendered the science of astronomy by Charles Augustus Young. Called to the chair of astronomy at Princeton University in 1877, he held that important position for thirty years, his courses a source of inspiration to his students. He was a member of many important scientific expeditions, invented an automatic spectroscope which has never been displaced, measured the velocity of the sun's rotation, and was a large contributor to public knowledge of the science.

Equally important have been the contributions made by Samuel Pierpont Langley, perhaps the greatest authority on the sun alive to-day. He showed a decided fondness for astronomy even as a boy, and at the age of thirty was assistant in the observatory at Harvard. Two years later, he was invited to fill the chair of astronomy in the Western University of Pennsylvania at Pittsburgh, and his work there began with the establishment of a complete time service, the first step toward the present daily time service conducted by the government. In 1870, he began the series of brilliant researches on the sun which have placed him at the head of authorities on that body. His scientific papers are very numerous and his series of magazine articles on "The New Astronomy" did much to acquaint the public with the rapid development of the science. In 1887, he was chosen to the important post of secretary of the Smithsonian Institution, and his recent years have been spent in experimenting with aëronautics.

Simon Newcomb is another who rendered yeoman service to the science. Born in Nova Scotia, the son of the village schoolmaster, he lived to become one of the eight foreign associates of the Institute of France, the first native American since Franklin to be so honored; to win the Huygens medal, given once in twenty years to the astronomer who had done the greatest service to the science in that period, and to receive the highest degree from practically every American college.

In his autobiography he tells how, at the age of five, he began to study arithmetic, at twelve algebra, and at thirteen Euclid. At the age of eighteen, planning to make his way to the United States, he set out on foot, taught school for a year or so, and then attracted the attention of Prof. Joseph Henry, of the Smithsonian Institution, by sending him a problem in algebra. The unusual aptitude for mathematics which the boy possessed so impressed Prof. Henry, that he set him to work as a computer on the Nautical Almanac; but he was soon attracted to "exact," or mathematical astronomy, which became his life work. Some idea of its importance may be gained when it is stated that every astronomer in the world to-day uses his determinations of the movements of the planets and the moon; every skipper in the world guides his ship by tables which Newcomb devised; and every eclipse is computed according to his tables. He supervised the construction and mounting of the equatorial telescope in the naval observatory at Washington, the Lick telescope, and Russia applied to him, in 1873, for aid in placing her great telescope.

A man of humor, sympathy and anecdote, he found, in the fall of 1908, that he was suffering from cancer, and hastened the work on the moon, which was to be his masterpiece. Ten months later, he was told that his course was nearly run—and his great work was still incomplete.