The collection of balsam continues until the first rain falls in April or May, when the work ceases. A vigorous tree, well treated, yields balsam for 30 years in succession, and if then allowed to rest 5 or 6 years can be used several years longer. The annual yield of balsam from 100 trees is said to be about 550 lbs.

From the very odoriferous flowers of the balsam tree or, according to others, by expressing the fruits, a white Peruvian balsam is obtained, which is, however, seldom found in commerce. It is of the consistency of honey, pale-yellow, smells of vanilla and melilot, and has an aromatic bitter taste. On standing for some time it deposits crystals of myroxocarpin.

Ordinary (black) Peruvian balsam is a black-brown fluid, transparent and dark (honey-yellow in thin layers), which retains its consistency even after being kept for years and deposits no crystals. It shows a slight acid reaction, has an agreeable odor reminding one of gum benzoin and vanilla, and at first a mild, but, later on, a sharp and pungent taste.

The specific gravity of pure Peru balsam formerly varied between 1.14 and 1.16, but at present between 1.135 and 1.145, this change in the specific gravity being very likely due to a different process of purification.

Peru balsam is miscible in every proportion with absolute alcohol, while ether leaves behind undissolved a black, smeary residue, and hot oils of turpentine or almonds dissolve only about one-half. It is miscible with acetone, chloroform, amyl alcohol. By digesting the balsam with aqueous potash lye, Peru balsam oil, which constitutes about 60 per cent. of the balsam, separates on the surface. In an undecomposed state the oil is, according to Kachler, chiefly benzyl, cinnamate, or cinnamein. The potash solution separated from the Peru balsam oil, contains cinnamic acid, benzoic acid, and resin. The latter, according to Stotze, can be separated into two portions, one soluble, and the other insoluble, in aqueous alcohol.

Benzine and petroleum-ether dissolve from the Peru balsam only the nearly colorless cinnamein of which it contains up to 45 per cent. The behavior of Peru balsam towards bisulphide of carbon is very characteristic, 3 parts of it giving, according to Flückiger, a clear solution with 1 part of bisulphide of carbon; if, however, 8 parts more of the latter be added, up to 30 per cent. of a dark resin is separated, while the bisulphide of carbon is but slightly colored.

From San Salvador 11,000 to 13,000 lbs. of Peru balsam are annually brought to Europe, it being generally imported in tin cans, and more rarely in earthen jars surrounded by a kind of plaited matting. According to whether the product comes by way of England, New York, Bremen, or Hamburg, it is distinguished as English, American, Bremen, or Hamburg Peru balsam. The supply being frequently insufficient, the balsam is subjected to many adulterations. A cheap, so-called London Peru balsam always contained colophony and had a specific gravity of 1.133. There can be no doubt that pure unadulterated Peru balsam is difficult to obtain.

As adulterants, are used: Alcohol, volatile oils, fat oil, especially castor oil; further, copaiba balsam, Canada balsam, gurjun balsam, storax, benzoin, and asphaltum. The establishment of these adulterants is connected with difficulties; but the properties of Peru balsam are so characteristic that it is quite easy to detect whether it is genuine and pure, or not, the specific gravity and proportions of solubility deserving especial attention in this respect. The test by the specific gravity is available, since most of the adulterants render the balsam specifically lighter, especially alcohol, but also copaiba balsam (specific gravity, O.95), castor oil (0.96), oil of turpentine (0.87), gurjun (0.96), etc. The customary procedure is as follows: Prepare a common salt solution of 1.25 specific gravity, by dissolving 1 part of dried sodium chloride in 5 parts of distilled water; drop the balsam into the solution; every drop of pure Peru balsam sinks in a roundish form to the bottom; but if the drop again comes to the surface and spreads out upon it, it is a sure sign of some kind of adulteration. However, the change in the specific gravity by the admixture of fat oils is but very slight, since the balsam can only be mixed with them to a conformable fluid in the proportion of from 7 to 10 to 1. Castor oil forms an exception in this respect, it being miscible also in other proportions.

Petroleum-ether is an excellent testing agent. Bring into a test-tube about 2.5 grammes of Peru balsam, and 6 to 7 centimeters of petroleum-ether, close the tube with the finger and shake vigorously; a brown, thickly-fluid mass adheres in unequal layers to the sides of the tube, and before running together remains in this position 1 to 2 minutes after the petroleum-ether has been poured into a porcelain saucer. If, however, the mass is thinly-fluid, and does not, in the above-mentioned manner, adhere to the sides of the tube, but, after shaking, collects below the petroleum-ether, the balsam is adulterated. After shaking, immediately pour off the petroleum-ether; if the latter is almost colorless, or but slightly colored yellowish, the balsam is pure; if, however, it is turbid, and soon forms a sediment, or if it is yellow or brownish, or brown, the balsam is adulterated.

Alcohol is added either by itself or in the form of saturated solution of storax, benzoin, or Canada balsam, by which means the specific gravity of the balsam is but slightly changed. Bring the above-mentioned common salt solution, together with 20 grammes of the Peru balsam to be examined, into a small flask, and distil off about 5 grammes; gradually mix the distillate with 5 drops of caustic potash lye and potassium iodide solution saturated with iodine, shaking gently until the mixture acquires a slightly yellow-brownish coloration. If this coloration does not disappear in one minute, add drop by drop more of the potash lye until discoloration appears. In the presence of alcohol, yellow crystals of iodoform, which are readily recognized under the microscope by their form, collect on the bottom of the fluid. Adulteration with a volatile oil is recognized in the distillate by odor and taste.