This is one of the most particular parts of the apparatus, as this is where the automatic action comes in, and great care must be taken in cutting these holes not to have any of them come closer to the perforated bottom than 1 inch. If this were not observed the acid would be constantly in contact with the zinc, and would rapidly get up pressure of gas sufficient to blow acid out of the upper tank, and the extra gas would escape through the acid supply pipe in blows. In fact, it would make the generator useless. This is the trouble with the French apparatus. The acid, having no place to expand in, is constantly coming into contact with the zinc, and unless the gas is being used as fast as generated it will blow acid out of the acid holder, making a bad mess, besides being very wasteful.

Now flange the other end of this pipe to fit the countersunk bottom of the acid chamber. Place the pipe in position and burn it to the bottom of the acid chamber and to the top of the gas chamber n, Fig. 7. One of the ⅛-inch gas cocks should be screwed on the brass nipple on top of the gas chamber. This will complete the gas generator. It will make a better job if the back of the generator be boarded tight and a door made to fit the space between the bottom of the acid chamber and the top of the gas chamber in front. It is very convenient to have it fixed in this manner, as in shipping it from one point to another the tubes and other incidentals can be placed in the space so made and shipped with safety. There is no objection to the acid and gas chambers being made in the shape of cylinders, instead of square, if so desired, but if made circular they should be made to fit the frame tightly to prevent jarring and eventually breaking the seams.

CHAPTER V.
MAKING THE GAS TO BURN THE GENERATOR.

In towns supplied with illuminating gas it is a comparatively simple operation to burn the lead lining for the generator, but for the convenience of those who cannot obtain gas it is necessary to give some method by which the generator can be burned. The method described will answer for illuminating gas as well as for gasoline.

To generate gas from gasoline is a simple operation. To do this, take a common 1-gallon oil can, remove the top of can screw and punch a ¼-inch hole in the center of it. Then make a tube of tin that will pass through this hole, sufficiently long to extend half way to the bottom and project 2 inches outside of can screw, and solder this tube in place. This projecting tube is for the purpose of connecting to the air holder. Remove the spout of the can and replace it with one to which the hose can be connected. Now fill the can two-thirds full of gasoline, but not full enough to cover the gas outlet, else it would be likely to force gasoline out instead of gas.

After this is done, screw the can screw in place, the long end of the tube extending into the gasoline, as shown in j, Fig. 9. A hose connection is now to be made with an air holder. As it is necessary to have an air holder both for this process and the hydrogen gas process, methods will be described for making air holders which can be used for either.

Fig. 9.—Gas Apparatus for Burning the Generator.

Air Holders.

Different lead burners have different views on this subject. Some prefer the bellows, with a contained air holder; some the air holder built like a gasometer, while others use an air holder similar to the generator in construction. These all have their advantages. For my part, I own and use all three.