Fig. 45.—Telescopic aspect of Jupiter.
Since its orbital revolution occupies nearly twelve years, Jupiter comes back into opposition with the Sun every 399 days, i.e., 1 year, 34 days, that is with one month and four days' delay each year. At these periods it is located at the extremity of a straight line which, passing by the Earth, is prolonged to the Sun. These are the epochs to be selected for observation. It shines then, all night, like some dazzling star of the first magnitude, of excessive whiteness: nor can it be confounded either with Venus, more luminous still (for she is never visible at midnight, in the full South, but is South-west in the evening, or South-east in the morning), nor with Mars, whose fires are ruddy.
In the telescope, the immense planet presents a superb disk that an enlargement of forty times shows us to be the same size to all appearance as that of the Moon seen with the unaided eye. Its shape is not absolutely spherical, but spheroid—that is, flattened at the poles. The flattening is 1⁄17.
We know that the Earth's axis dips a certain quantity on the plane of her orbit, and that it is this inclination that produces the seasons. Now it is not the same for Jupiter. His axis of rotation remains almost vertical throughout the course of his year, and results in the complete absence of climates and seasons. There is neither glacial zone, nor tropic zone; the position of Jupiter is eternally that of the Earth at the season of the equinox, and the vast world enjoys, as it were, perpetual spring. It knows neither the hoar-frost nor the snows of winter. The heat received from the Sun diminishes gradually from the equator to the poles without abrupt transitions, and the duration of day and night is equal there throughout the entire year, under every latitude. A privileged world, indeed!
It is surrounded by a very dense, thick atmosphere, which undergoes more extensive variations than could be produced by the Sun at such a distance. Spectral analysis detects a large amount of water-vapor, showing that this planet still possesses a very considerable quantity of intrinsic heat.
Most conspicuous upon this globe are the larger or smaller bands or markings (gray and white, sometimes tinted yellow, or of a maroon or chocolate hue) by which its surface is streaked, particularly in the vicinity of the equator. These different belts vary, and are constantly modified, either in form or color. Sometimes, they are irregular, and cut up; at others they are interspersed with more or less brilliant patches. These patches are not affixed to the surface of the globe, like the seas and continents of the Earth; nor do they circulate round the planet like the satellites, in more or less elongated and regular revolutions, but are relatively mobile, like our clouds in the atmosphere, while observation of their motion does not give the exact period of the rotation of Jupiter. Some only appear upon the agitated disk to vanish very quickly; others subsist for a considerable period.
One has been observed for over a quarter of a century, and appears to be almost immobile upon this colossal globe. This spot, which was red at its first appearance, is now pale and ghostly. It is oval (vide Fig. 45) and measures 42,000 kilometers (26,040 miles) in length by 15,000 kilometers (9,300 miles) in width. Hence it is about four times as long as the diameter of our Earth; that is, relatively to the size of Jupiter, as are the dimensions of Australia in proportion to our globe. The discussion of a larger number of observations leads us to see in it a sort of continent in the making, a scoria recently ejected from the mobile and still liquid and heated surface of the giant Jupiter. The patch, however, oscillates perceptibly, and appears to be a floating island.
We must add that this vast world, like the Sun, does not rotate all in one period. Eight different currents can be perceived upon its surface. The most rapid is that of the equatorial zone, which accomplishes its revolution in 9 hours, 50 minutes, 29 seconds. A point situated on the equator is therefore carried forward at a speed of 12,500 meters (7 miles) per second, and it is this giddy velocity of Jupiter that has produced the flattening of the poles. From the equator to the poles, the swiftness of the currents diminishes irregularly, and the difference amounts to about five minutes between the movement of the equatorial stream, and that of the northern and southern currents. But what is more curious still is that the velocity of one and the same stream is subject to certain fluctuations; thus, in the last quarter of a century, the speed of the equatorial current has progressively diminished. In 1879, the velocity was 9 hours, 49 minutes, 59 seconds, and now it is, as we have already seen, 9 hours, 50 minutes, 29 seconds, which represents a substantial reduction. The rotation of the red patch, at 25 degrees of the southern latitude, is effected in 9 hours, 55 minutes, 40 seconds.
We are confronted with a strange and mysterious world. It is the world of the future.