4 7 10 16 28 52 100 196 388.

Now it is a very curious fact that if the distance between the Earth and the Sun be represented by 10, the figure 4 represents the orbit of Mercury, 7 that of Venus, 16 of Mars; the figure 28 stands for the medium distance of the minor planets; the distances of Jupiter, Saturn, and Uranus agree with 52, 100, and 196.

The immortal French mathematician Le Verrier, who pursued the solution of the Uranian problem, supposed naturally that the disturbing planet must be at the distance of 388, and made his calculations accordingly. Its direction in the Heavens was indicated by the form of the disturbances; the orbit of Uranus bulging, as it were, on the side of the disturbing factor.

On August 31, 1846, Le Verrier announced the position of the ultra-Uranian planet, and on September 23d following, a German astronomer, Galle, at the Observatory of Berlin, who had just received this intelligence, pointed his telescope toward the quarter of the Heavens designated, and, in fact, attested the presence of the new orb. Without quitting his study table, Le Verrier, by the sole use of mathematics, had detected, and, as it were, touched at pen's point the mysterious stranger.

Only, it is proved by observation and calculation that it is less remote than was expected from the preceding law, for it gravitates at a distance of 300, given that from the Earth to the Sun as 10.

This planet was called Neptune, god of the seas, son of Saturn, brother of Jupiter. The name is well chosen, since the King of the Ocean lives in darkness in the depths of the sea, and Le Verrier's orb is also plunged in the semi-obscurity of the depths of the celestial element. But it was primarily selected to do justice to an English astronomer, Adams, who had simultaneously made the same calculations as Le Verrier, and obtained the same results—without publishing them. His work remained in the records of the Greenwich Observatory.

The English command the seas, and wherever they dip their finger into the water and find it salt, they feel themselves "at home," and know that "Neptune's trident is the scepter of the world," hence this complimentary nomenclature.

Neptune is separated by a distance of four milliards, four hundred million kilometers from the solar center.

At such a distance, thirty times greater than that which exists between the Sun and our world, Neptune receives nine hundred times less light and heat than ourselves; i.e., Spitzbergen and the polar regions of our globe are furnaces compared with what must be the Neptunian temperature. Absolutely invisible to the unaided eye, this world presents in the telescope the aspect of a star of the eighth magnitude. With powerful magnifications it is possible to measure its disk, which appears to be slightly tinged with blue. Its diameter is four times larger than our own, and measures about 48,000 kilometers (29,900 miles), its surface is sixteen times vaster than that of the Earth, and to attain its volume we should have to put together fifty-five globes similar to our own. Weight at its surface must be about the same as here, but its medium density is only 1⁄3 that of the Earth.

It gravitates slowly, dragging itself along an orbit thirty times vaster than that of our globe, and its revolution takes 164 years, 281 days, i.e., 164 years, 9 months. A single year of Neptune thus covers several generations of terrestrial life. Existence must, indeed, be strange in that tortoise-footed world!