It is a curious fact that while comets have so often spread terror on the Earth, shooting stars should on the contrary have been regarded with benevolent feelings at all times. And what is a shooting star? These dainty excursionists from the celestial shores are not, as is supposed, true stars. They are atoms, nothings, minute fragments deriving in general from the disintegration of comets. They come to us from a vast distance, from millions on millions of miles, and circle in swarms around the Sun, following a very elongated ellipse which closely resembles that of the cometary orbit. Their flight is extremely rapid, reaching sometimes more than 40 kilometers (25 miles) per second, a cometary speed that is, as we have seen, greatly above that of our terrestrial vehicle, which amounts to 29 to 30 kilometers (about 19 miles).
These little corpuscles are not intrinsically luminous; but when the orbit of a swarm of meteors crosses our planet, a violent shock arises, the speed of which may be as great as 72 kilometers (45 miles) in the first second if we meet the star shower directly; the average rate, however, does not exceed 30 to 40 kilometers (19 to 25 miles), for these meteors nearly always cross our path obliquely. The height at which they arrive is usually 110 kilometers (68 miles), and 80 kilometers (50 miles) at the moment of disappearance of the meteor; but shooting stars have been observed at 300 kilometers (186 miles).
The friction caused by this collision high up in the atmosphere transforms the motion into heat. The molecules incandesce, and burn like true stars with a brilliancy that is often magnificent.
But their glory is of short duration. The excessive heat resulting from the shock consumes the poor firefly; its remains evaporate, and drop slowly to the Earth, where they are deposited on the surface of the soil in a sort of ferruginous dust mixed with carbon and nickel. Some one hundred and forty-six milliards of them reach us annually, as seen by the unaided eye, and many more in the telescope; the effect of these showers of meteoric matter is an insensible increase in the mass of our globe, a slight lessening of its rotary motion, and the acceleration of the lunar movements of revolution.
Although the appearance of shooting stars is a common enough phenomenon, visible every night of the year, there are certain times when they arrive in swarms, from different quarters of the sky. The most remarkable dates in this connection are the night of August 10th and the morning of November 14th. Every one knows the shooting stars of August 10th, because they arrive in the fine warm summer evenings so favorable to general contemplation of the Heavens. The phenomenon lasts till the 12th, and even beyond, but the maximum is on the 10th. When the sky is very clear, and there is no moon, hundreds of shooting stars can be counted on those three nights, sometimes thousands. They all seem to come from the same quarter of the Heavens, which is called the radiant, and is situated for the August swarm in the constellation of Perseus, whence they have received the name of Perseids. Our forefathers also called them the tears of St. Lawrence, because the feast of that saint is on the same date. These shooting stars describe a very elongated ellipse, and their orbit has been identified with that of the Great Comet of 1862.
The shower of incandescent asteroids on November 14th is often much more abundant than the preceding. In 1799, 1833, and 1866, the meteors were so numerous that they were described as showers of rain, especially on the first two dates. For several hours the sky was furrowed with falling stars. An English mariner, Andrew Ellicot, who made the drawing we reproduce (Fig. 55), described the phenomenon as stupendous and alarming (November 12, 1799, 3 A.M.). The same occurred on November 13, 1833. The meteors that scarred the Heavens on that night were reckoned at 240,000. These shooting stars received the name of Leonids, because their radiant is situated in the constellation of the Lion.
Fig. 55.—Shooting Stars of November 12, 1799.
From a contemporary drawing.