And now let us come back to the consequences of the Earth's motion. In the first place our planet does not turn vertically nor on its side, but is tipped or inclined a certain quantity: 23° 27′.
Now, throughout its annual journey round the Sun, the inclination remains the same. That is what produces the seasons and climates. The countries which have a larger circle to travel over in the hemisphere of the solar illumination have the longer days, those which have a smaller circle, shorter days. At the equator there is constantly, and all through the year, a twelve-hour day, and a night of twelve hours.
Fig. 61.—Inclination of the Earth.
In summer, the pole dips toward the Sun, and the rays of the orb of day cover the corresponding hemisphere with their light. Six months later this same hemisphere is in winter, and the opposite hemisphere is in its turn presented to the Sun. June 21 is the summer solstice for the northern hemisphere, and is at the same time winter for the southern pole. Six months later, on December 21, we have winter, while the southern hemisphere is completely exposed to the Sun. Between these two epochs, when the radiant orb shines exactly upon the equator, that is on March 21, we have the spring equinox, that delicious flowering season when all nature is enchanting and enchanted; on September 21 we have the autumn equinox, melancholy, but not devoid of charm.
The terrestrial sphere has been divided into different zones, with which the different climates are in relation:
1. The tropical zone, which extends 23° 27′ from one part to the other of the equator. This is the hottest region. It is limited by the circle of the tropics.
2. The temperate zones, which extend from 23° 27′ to 66° 23′ of latitude, and where the Sun sets every day.
3. The glacial zones, drawn round the poles, at 66° 33′ latitude, where the Sun remains constantly above or below the horizon for several days, or even several months. These glacial zones are limited by the polar circles.