High-power electric lamps are not made with vacuums but are "gas-filled." The gas that is oftenest put into lamps is nitrogen,—the same gas that is mixed with the oxygen in air. By taking all the oxygen out of a quantity of air, the lamp manufacturers can use in perfect safety the nitrogen that is left. It will not combine with the glowing filament. There is no oxygen to combine with the filament; so the lamp does not burn out.

What flames are. When you look at a flame, it seems as if fire were a real thing and not merely a process of combining something with oxygen. The flame is a real thing. It is made up of hot gases, rising from the hot fuel, and it is usually filled with tiny glowing particles of carbon. When you burn a piece of wood, the heat partly separates its elements, just as heating sugar separates the carbon from the water. Some of the hydrogen gas in the wood and some of the carbon too are separated from the wood by the heat. These are pushed up by the cooler air around and combine with the oxygen as they rise. The hydrogen combines more easily than the carbon; part of the carbon may remain behind as charcoal if your wood does not all burn up, and many of the smaller carbon particles only glow in the burning hydrogen, instead of burning. That is what makes the flame yellow. If you hold anything white over a yellow flame, it will soon be covered with black soot, which is carbon.

What smoke is. Smoke consists mostly of little specks of unburned carbon. That is why it is gray or black. When you have black smoke, you may always be sure that some of the carbon particles are not combining properly with oxygen.

Yellow flames are usually smoky; that is, they usually are full of unburned bits of carbon that float off above the flame. But by letting enough air in with the flame, it is possible to make all the little pieces of carbon burn (combine with the oxygen of the air) before they leave the heat of the burning hydrogen. That is why kerosene lamps do not smoke when the chimney is on. The chimney keeps all the hot gases together, and this causes a draft of fresh air to blow up the chimney to push the hot gases on up. The fresh air blowing up past the flame gives plenty of oxygen to combine with the carbon. The drum part of an oil heater acts in the same way; when the drum is open, the heater smokes badly; when it is closed up, enough air goes past the flame to burn up all the carbon. But if you turn either lamp or heater too high, it will smoke anyway; you cannot get enough air through to combine with all the carbon.

The hottest flames are the blue flames. That is because in a blue flame all the carbon is burning up along with the hydrogen of the fuel—both are combining with the oxygen of the air as rapidly as possible. A gas or gasoline stove is so arranged that air is fed into the burner with the gas. You will see this in the following experiment:

Experiment 96. Light the Bunsen burner in the laboratory. Open wide the little valve in the bottom. Now put your finger and thumb over the hole in the bottom of the burner. What happens to the flame? Turn the valve so that it will close the hole in the same way. Now hold a white saucer over the flame, being careful not to get it hot enough to break. What is the black stuff on the bottom of the saucer?

Examine the gas plate (small gas stove) in the laboratory. Light it, and see if you can find the place where the air is fed in with the gas. Close this place and see what happens. Open it wider and see what happens. If the air opening is too large, the flame "blows"; there is too much cold air coming in with the gas, and your flame is not as hot as it would be if it did not "blow." Also, the stove is liable to "back-fire" (catch fire at the air opening) when the air opening is too wide.

Fig. 168. The Bunsen burner smokes when the air holes are closed.

Application 69. An oil lamp tipped over and the burning oil spread over the floor. Near by were a pail of water, a pan of ashes, a rug, and a seltzer siphon. Which of these might have been used to advantage in putting out the fire?

Application 70. My finger was burned. I wanted the flesh around it to heal and new skin cells to live and grow rapidly around the burn.

"Put a rubber finger cot on the finger and keep all air out," one friend advised me. "Air causes decay and will therefore be bad for the burn."

"He's wrong; you should bandage it with clean cloth; you want air to reach the finger, I've heard," said another friend.

"Oh, no, you don't; air makes things burn, and the burn will therefore get worse," still another one said. What should I have done?

Application 71. Two students were discussing how coal was formed.

"The trees must have fallen into water and been completely covered by it, or they would have decayed," said one.

Fig. 169. Regulating the air opening in a gas stove.

"Water makes things decay more quickly; there must have been a drought and the trees must have fallen on dry ground," said the second.

Which was right?

Application 72. A gas stove had a yellow flame. In front, by the handles, was a metal disk with holes so arranged that turning it to the left allowed air to mix with the gas on the way to the flame, and turning it to the right shut the air off (see Fig. 170).

One member of the family said, "Turn the disk to the left and let more air mix with the gas."

But another objected. "It has too much air already; that's why the flame is yellow. Turn it to the right and shut off the air from below."

"You're both wrong. Why do you want to change it?" said a third member of the family. "The yellow flame is the hottest, anyway. Can't you see that the yellow flame gives more light? And don't you know that light is just a kind of radiant heat? Of course the yellow flame is the hottest. Leave the stove alone."

Who was right?