Objects negatively and positively charged with electricity. There are probably electrons in everything. But when there is just the usual number of electrons in an object, it acts in an ordinary way and we say that it is not charged with electricity. If there are more than the usual number of electrons on an object, however, we say that it is negatively charged, or that it has a negative charge of electricity on it. But if there are fewer electrons than usual in an object, we say that it has a positive charge of electricity on it, or that it is positively charged.
Fig. 110. The charged comb picks up pieces of paper.
You might expect a "negative charge" to indicate fewer electrons than usual, not more. But people called the charge "negative" long before they knew anything about electrons; and it is easier to keep the old name than to change all the books that have been written about electricity. So we still call a charge "negative" when there are unusually many electrons, and we call it "positive" when there are unusually few. A negative charge means that more electrons are present than usual. A positive charge means that fewer electrons are present than usual.
Before you rubbed your comb on wool, neither the comb nor the wool was charged; both had just the usual number of electrons. But when you rubbed them together, you rubbed some of the electrons off the wool on to the comb. Then the comb had a negative charge; that is, it had too many electrons—too many little particles of electricity.
When you brought the comb near the hair, the hair had fewer electrons than the comb. Whenever one object has more electrons on it than another, the two objects are pulled toward each other; so there was an attraction between the comb and the hair, and the hair came over to the comb. As soon as it touched the comb, some of the extra electrons jumped from the comb to the hair. The electrons could not get off the hair easily, so they stayed there. Electrons repel each other—drive each other away. So when you had a number of electrons on the end of the comb and a number on the end of the hair, they pushed each other away, and the hair flew from the comb. But when you pinched the hair, the electrons could get off it to your moist hand, which lets electricity through it fairly easily. Then the comb had extra electrons on it and the hair did not; so the comb pulled the hair over toward it again.
When you brought the charged comb near your ear, some of the electrons on the comb pushed the others off to your ear, and you heard them snap as they rushed through the air, making it vibrate.
How lightning and thunder are caused. In thunderstorms the strong currents of rising air blow some of the forming raindrops in the clouds into bits of spray. The tinier droplets get more than their share of electrons when this happens and are carried on up to higher clouds. In this way clouds become charged with electricity. One cloud has on it many more electrons than another cloud that is made, perhaps, of lower, larger droplets. The electricity leaps from the cloud that has the greater number of electrons to the cloud that has the less number, or it leaps from the heavily charged cloud down to a tree or house or the ground. You see the electricity leap and call it lightning. Much more leaps, however, than leaped from the comb to your ear, and so it makes a very much louder snap. The snap is caused in this way: As the electric spark leaps through the air, it leaves an empty space or vacuum immediately behind it. The air from all sides rushes into the vacuum and collides there; then it bounces back. This again leaves a partial vacuum; so the air rushes in once more, coming from all sides at once, and again bounces back. This starts the air vibrations which we call sound. Then the sound is echoed from cloud to cloud and from the clouds to the earth and back again, and we call it thunder.
The electricity you have been reading about and experimenting with in this section is called static electricity. "Static" means standing still. The electricity you rubbed up to the surface of the comb or glass stayed still until it jumped to the bit of paper or hair; then it stayed still on that. This was the only kind of electricity most people knew anything about until the nineteenth century; and it is not of any great use. Electricity must be flowing through things to do work. That is why people could not invent electric cars and electric lights and telephones before they knew how to make electricity flow steadily rather than just to stand still on one thing until it jumped across to another and stood there. In the next chapter we shall take up the ways in which electrons are made to flow and to do work.