CHAPTER XXIX.
THE VENOMS AND THEIR REMEDIES.
ON a subject which has baffled research in all ages, viz. the endeavour to discover an antidote for snake venom, it scarcely becomes me to speak. Yet, as in the foregoing chapters, I may at least venture to lay before my readers some general account of the various remedies used in snake regions, and, for the benefit of residents in those countries, describe the most approved means of treating the bites of venomous serpents. Information of this kind will not, I trust, be wholly useless.
First, it may be as well to impressively repeat what has been already constantly affirmed by all our scientific experimentalists on snake venoms, that ‘as yet no antidote to them has been found.’ Remedies there are in abundance; and it is just as great an error to believe that all snake venom is incurable—i.e. that a bitten person must necessarily die—as that there are countless ‘antidotes,’ as persons broadly and loosely call the various means of cure.
At the time when Professor Halford’s treatment by subcutaneous injections of ammonia were so popularly discussed, you might read week after week of ‘Halford’s newly-discovered antidote for snake-bites.’ Professor Halford, so far from claiming the discovery of an ‘antidote,’ emphatically explained that ammonia thus used was ‘only a mode of treatment.’ ‘It must never be forgotten,’ he said, ‘that ammonia cannot destroy the venom;’ by which we comprehend what the scientific mean by an ‘antidote,’ something that effectually destroys, neutralizes, and annihilates the poison. Sir Joseph Fayrer, after long and elaborate experiments with the Indian thanatophidia, prescribes various remedies and modes of treatment, ‘but do not confuse these with antidotes!’ he urges.[142] ‘To conceive of an antidote to snake poison in the true sense of the term,’ he explains, ‘one must imagine a substance so subtle as to follow, overtake, and neutralize the venom in the blood, or that shall have the power of counteracting and neutralizing the deadly influence it has exerted on the vital forces. Such a substance has still to be found, and our present experience of the action of drugs does not lead to hopeful anticipation that we shall find it.’
Notwithstanding these confident assertions, we are continually reading of ‘an infallible cure for snake-bite, never known to fail;’ ‘another antidote to snake-bite;’ or that ‘at length an antidote has been discovered,’ which on investigation may be something tried long ago, and occasionally with success, or it may be a plant or a chemical preparation which under certain circumstances effects a cure, but none of which will stand the above definition of antidote. Each new attempt is announced as ‘an antidote’ nevertheless. Dr. Arthur Stradling was severely hauled over the coals for ‘boasting of an antidote,’ when it accidentally transpired that he had been experimenting on himself ‘with a view to discovering, not an antidote, but a prophylactic against the venom,’ to use his own words.[143]
More recently still permanganate of potash has been announced as an antidote; and no doubt in some cases it has proved a successful remedy, as occasionally, but not invariably, other treatments have been. There still, however, appears to be the same lack of substantial evidence with regard to its being an ‘infallible antidote’ in the chemical acceptation of the term; and indeed as venoms themselves vary, a remedy that might prove effectual in one case might fail in another. Dr. Stradling, than whom perhaps few are more competent to offer opinions on the subject (he having for five or six years subjected himself to experiments and carefully noted the effects on his own person, as others have noted the effects on animals and birds bitten), says that you might as well hunt through the pharmacopeia for a drug that will be a specific in every kind of fever, or ‘to look for a general antidote to opium, strychnine, bella donna, arsenic, and mercury poisoning,’ as to expect to find one antidote for every kind of snake venom. ‘When we know how many different venoms there are, we may look for an antidote to each,’ he has explained.
Years ago the venoms were classed under the heads of Viperine, Echidnine, Crotaline, etc.; but Dr. Stradling states that he has found very different venoms in Crotalus horridus and Crotalus durissus, and that he prepared himself differently for each species of snake with which he experimented, having in five different species found five distinct and separate venoms. The bite of one snake more rapidly affects the blood, that of another the nerves; while the local and the constitutional symptoms also vary; but ‘all are attended more or less with rigors, delirium, syncope, convulsions, paralysis, and coma.’ Many of the so-called cures have not been cures at all, because, as was afterwards found, the snakes that inflicted the bites were not venomous. This we can understand from the indiscriminate use of such vernaculars as ‘adder,’ ‘jararaca,’ ‘cobra,’ as explained in previous chapters. Or, if undoubtedly a bite has been given by an undoubtedly venomous kind, it does not follow that a full charge of venom accompanied the bite. The glands may have been previously exhausted, the snake may have been feeble, or it might not have expended its poison. For among other marvels we are led to believe that vipers, perhaps also the elapidæ, have a control over their store of venom, and do not involuntarily expend it, that is, when forced to bite. ‘Great doubt exists as to the efficacy of forced bites,’ says Nicholson. Dr. Weir Mitchel came to the same conclusion in his rattlesnake experiments, viz. that a snake ‘is able voluntarily to control the shedding of its poison when inflicting a wound or grasping an object with its jaws.’ This accounts for many bites not having proved fatal, and for reputed antidotes having effected ‘cures.’ Nor, when we come to think of it, does this control of the venom appear so extraordinary after all. The poison gland is a modification of ordinary salivary glands; and, if we may have recourse to a not very elegant comparison, a person or an animal can simulate the action of biting or of spitting without ejecting saliva. Again, as Dr. Stradling expresses it, ‘snake virus is a natural secretion provided for the distinct physiological purpose of enabling the reptile to secure its prey.’[144] Fayrer also explains that some snakes, naturally sluggish, ‘bite reluctantly;’ but, if irritated and made angry, then ‘with great force and determination.’ In the one instance a bitten person might recover, in the second case die, because here the snake ‘thoroughly imbedded its fangs’ (p. 379).
It is often asked, ‘Which is the most poisonous snake?’—a question as difficult to answer as, ‘Which is the most poisonous plant?’ Dr. Günther’s opinion is that the degree of danger depends less on the species which inflicts the wound, than on the bulk of the snake, the quantity of its venom, the season or temperature, and the place of the wound. Quantity for quantity, the virus of one snake is more active or more powerful than another, and different in its effects; but then the lesser discharge of poison directly into a vein might be more serious than a full discharge in a part where absorption is slow. Also exactly the same quantity, minim for minim, would more seriously affect a warm than a cold blooded animal, more seriously affect a feeble and timid person or animal than the brave and vigorous. Yet, as there is a notable gradation in the development of the poison apparatus, the perfection of which culminates in the viper, it seems not unreasonable to decide that as a rule a viper is more virulent than an elaps of the same size—let us say bulk, because the viperine snakes are short and thick and the elapidæ long and slight. Each snake is supplied with venom adequate to its own requirements, that is, enough to kill the prey on which it subsists, a large viper with a larger supply for a larger animal; and a small elaps with enough to kill its little bird or mouse. There may be exceptions; as, for instance, in the Callophis intestinalis, whose glands are abnormally developed, though it is not a large snake; still accidents or experiments rather go to prove that a viper is more noxious than an elaps under similar conditions. Fayrer proved the virulence of Echis carinata, the little Indian 18-inch viper’s poison, by diluting a quarter of a drop of its venom in ten drops of water and injecting it into the leg of a fowl, which died in ten minutes; while the same proportions of cobra venom killed a fowl in thirty minutes. Nicholson affirms that the Russell’s viper can eject as much poison in half a second as a cobra can in three seconds. But if the viper be in a torpid condition, it might eject little or none. A strong Daboia bit a feeble bull, which died; but two feeble Daboias bit a strong bull, which recovered. These latter vipers were moulting, and their functions were inactive—the bites feeble, perhaps. In fact, the conditions are so many and great, that after all it is hazardous to form any definite conclusion. Some notes of the effects on bitten animals, taken at the Zoological Gardens while the snakes were being fed, shall be faithfully recorded in the ensuing chapter.
With regard to the many drugs used in various countries for the cure of snake-bite, it is curious to note that, as a rule, they are procured from the most deadly plants. As ‘like cures like,’ so poison cures poison. Most of them are powerful stimulants, in which lies their chief virtue. Among them are aristolochia, opium, ipecacuanha, senega-root, guaco or huaco, asclepias, liatris, euphorbia, polygala, ophiorrhiza, etc. A long list might be written. It is noteworthy, too, that the natives of the countries in which these plants are variously found, have strong faith in them, and indeed use them with more or less of success. The early writers on America entertained no sort of doubt as to the efficacy of the plants or preparations used by the Indians. Purchas, in 1626, after describing the ‘Ibiracua, which causeth by his biting the Bloud to issue thorow all Parts of the Bodie, Eyes, Mouth, Nose, Eares,’ etc., says: ‘But the Indians are acquainted with a certaine Herbe that will heal their Woundes.’ Lawson, Berkeley, and Catesby tell us the Indians were never without a remedy, which they carried about with them, but the preparation of which differed in each tribe. Border Americans of the present day, also, are never at a loss when snake-bitten, though the most popular of modern remedies is whisky. (Not that this offers any exception to the rule, that poison kills poison; the comic philosophy being that whisky, as the stronger poison of the two, ‘goes in for first innings, so to speak.’)