98. Letter copying. In one of the modes of performing this process, a sheet of very thin paper is damped, and placed upon the writing to be copied. The two papers are then passed through a rolling press, and a portion of the ink from one paper is transferred to the other. The writing is, of course, reversed by this process; but the paper to which it is transferred being thin, the characters are seen through it on the other side, in their proper position. Another common mode of copying letters is by placing a sheet of paper covered on both sides with a substance prepared from lamp-black, between a sheet of thin paper and the paper on which the letter to be despatched is to be written. If the upper or thin sheet be written upon with any hard pointed substance, the word written with this style will be impressed from the black paper upon both those adjoining it. The translucency of the upper sheet, which is retained by the writer, is in this instance necessary to render legible the writing which is on the back of the paper. Both these arts are very limited in their extent, the former affording two or three, the latter from two to perhaps ten or fifteen copies at the same time.
99. Printing on china. This is an art of copying which is carried to a very great extent. As the surfaces to which the impression is to be conveyed are often curved, and sometimes even fluted, the ink, or paint, is first transferred from the copper to some flexible substance, such as paper, or an elastic compound of glue and treacle. It is almost immediately conveyed from this to the unbaked biscuit, to which it more readily adheres.
100. Lithographic printing. This is another mode of producing copies in almost unlimited number. The original which supplies the copies is a drawing made on a stone of a slightly porous nature, the ink employed for tracing it is made of such greasy materials that when water is poured over the stone it shall not wet the lines of the drawing. When a roller covered with printing ink, which is of an oily nature, is passed over the stone previously wetted, the water prevents this ink from adhering to the uncovered portions; whilst the ink used in the drawing is of such a nature that the printing ink adheres to it. In this state, if a sheet of paper be placed upon the stone, and then passed under a press, the printing ink will be transferred to the paper, leaving the ink used in the drawing still adhering to the stone.
101. There is one application of lithographic printing which does not appear to have received sufficient attention, and perhaps further experiments are necessary to bring it to perfection. It is the reprinting of works which have just arrived from other countries. A few years ago one of the Paris newspapers was reprinted at Brussels as soon as it arrived by means of lithography. Whilst the ink is yet fresh, this may easily be accomplished: it is only necessary to place one copy of the newspaper on a lithographic stone; and by means of great pressure applied to it in a rolling press, a sufficient quantity of the printing ink will be transferred to the stone. By similar means, the other side of the newspaper may be copied on another stone, and these stones will then furnish impressions in the usual way. If printing from stone could be reduced to the same price per thousand as that from moveable types, this process might be adopted with great advantage for the supply of works for the use of distant countries possessing the same language. For a single copy might be printed off with transfer ink, and thus an English work, for example, might be published in America from stone, whilst the original, printed from moveable types, made its appearance on the same day in England.
102. It is much to be wished that such a method were applicable to the reprinting of facsimiles of old and scarce books. This, however, would require the sacrifice of two copies, since a leaf must be destroyed for each page. Such a method of reproducing a small impression of an old work, is peculiarly applicable to mathematical tables, the setting up of which in type is always expensive and liable to error, but how long ink will continue to be transferable to stone, from paper on which it has been printed, must be determined by experiment. The destruction of the greasy or oily portion of the ink in the character of old books, seems to present the greatest impediment; if one constituent only of the ink were removed by time, it might perhaps be hoped, that chemical means would ultimately be discovered for restoring it: but if this be unsuccessful, an attempt might be made to discover some substance having a strong affinity for the carbon of the ink which remains on the paper, and very little for the paper itself.(2*)
103. Lithographic prints have occasionally been executed in colours. In such instances a separate stone seems to have been required for each colour, and considerable care, or very good mechanism, must have been employed to adjust the paper to each stone. If any two kinds of ink should be discovered mutually inadhesive, one stone might be employed for two inks; or if the inking-roller for the second and subsequent colours had portions cut away corresponding to those parts of the stone inked by the previous ones, then several colours might be printed from the same stone: but these principles do not appear to promise much, except for coarse subjects.
104. Register printing. It is sometimes thought necessary to print from a wooden block, or stereotype plate, the same pattern reversed upon the opposite side of the paper. The effect of this, which is technically called Register printing, is to make it appear as if the ink had penetrated through the paper, and rendered the pattern visible on the other side. If the subject chosen contains many fine lines, it seems at first sight extremely difficult to effect so exact a super position of the two patterns, on opposite sides of the same piece of paper, that it shall be impossible to detect the slightest deviation; yet the process is extremely simple. The block which gives the impression is always accurately brought down to the same place by means of a hinge; this spot is covered by a piece of thin leather stretched over it; the block is now inked, and being brought down to its place, gives an impression of the pattern to the leather: it is then turned back; and being inked a second time, the paper intended to be printed is placed upon the leather, when the block again descending, the upper surface of the paper is printed from the block, and its undersurface takes up the impression from the leather. It is evident that the perfection of this mode of printing depends in a great measure on finding some soft substance like leather, which will take as much ink as it ought from the block, and which will give it up most completely to paper. Impressions thus obtained are usually fainter on the lower side; and in order in some measure to remedy this defect, rather more ink is put on the block at the first than at the second impression.
Of copying by casting
105. The art of casting, by pouring substances in a fluid state into a mould which retains them until they become solid, is essentially an art of copying; the form of the thing produced depending entirely upon that of the pattern from which it was formed.
106. Of casting iron and other metals.—Patterns of wood or metal made from drawings are the originals from which the moulds for casting are made: so that, in fact, the casting itself is a copy of the mould; and the mould is a copy of the pattern. In castings of iron and metals for the coarser purposes, and, if they are afterwards to be worked even for the finer machines, the exact resemblance amongst the things produced, which takes place in many of the arts to which we have alluded, is not effected in the first instance, nor is this necessary. As the metals shrink in cooling, the pattern is made larger than the intended copy; and in extricating it from the sand in which it is moulded, some little difference will occur in the size of the cavity which it leaves. In smaller works where accuracy is more requisite, and where few or no after operations are to be performed, a mould of metal is employed which has been formed with considerable care. Thus, in casting bullets, which ought to be perfectly spherical and smooth, an iron instrument is used, in which a cavity has been cut and carefully ground; and, in order to obviate the contraction in cooling, a jet is left which may supply the deficiency of metal arising from that cause, and which is afterwards cut off. The leaden toys for children are cast in brass moulds which open, and in which have been graved or chiselled the figures intended to be produced.