1. Wire — — — 24.75
2. Straightening and cutting 1.2 .5 4.5 —
3. Coarse pointing 1.2 .625 10.0 —
Turning wheel(2*) 1.2 .875 7.0 —
Fine Pointing .8 .5 9.375 —
Turning wheel 1.2 .5 4.75 —
Cutting off pointed ends .6 .375 7.5 —
4. Turning spiral .5 .125 3.0 —
Cutting off heads .8 .375 5.625 —
Fuel to anneal ditto — — — .125
5. Heading 12.0 .333 4.25 —
6. Tartar for cleaning — — — .5
Tartar for whitening — — — .5
7. Papering 4.8 .5 2.0 —
Paper — — — 1.0
Wear of tools — — — 2.0
24.3 4.708
The great expense of turning the wheel appears to have arisen from the person so occupied being unemployed during half his time, whilst the pointer went to another manufactory
338. It appears from the analysis we have given of the art of pinmaking, that it occupies rather more than seven hours and a half of time, for ten different individuals working in succession on the same material, to convert it into a pound of pins; and that the total expense of their labour, each being paid in the joint ratio of his skill and of the time he is employed, amounts very nearly to 1s. 1d. But from an examination of the first of these tables, it appears that the wages earned by the persons employed vary from 4 1/2d. per day up to 6s., and consequently the skill which is required for their respective employments may be measured by those sums. Now it is evident, that if one person were required to make the whole pound of pins, he must have skill enough to earn about 5s. 3d. per day, whilst he is pointing the wires or cutting off the heads from the spiral coils—and 6s. when he is whitening the pins; which three operations together would occupy little more than the seventeenth part of his time. It is also apparent, that during more than one half of his time he must be earning only 1s. 3d, per day, in putting on the heads; although his skill, if properly employed, would, in the same time, produce nearly five times as much. If, therefore, we were to employ, for all the processes, the man who whitens the pins, and who earns 6s. per day, even supposing that he could make the pound of pins in an equally short time, yet we must pay him for his time 46. 14 pence, or about 3s. 10d. The pins would therefore cost, in making, three times and three quarters as much as they now do by the application of the division of labour.
The higher the skill required of the workman in any one process of a manufacture, and the smaller the time during which it is employed, so much the greater will be the advantage of separating that process from the rest, and devoting one person's attention entirely to it. Had we selected the art of needle-making as our illustration, the economy arising from the division of labour would have been still more striking; for the process of tempering the needles requires great skill, attention, and experience, and although from three to four thousand are tempered at once, the workman is paid a very high rate of wages. In another process of the same manufacture, dry-pointing, which also is executed with great rapidity, the wages earned by the workman reach from 7s. to 12s., 15s., and even, in some instances, to 20s. per day; whilst other processes are carried on by children paid at the rate of 6d. per day.
239. Some further reflections suggested by the preceding analysis, will be reserved until we have placed before the reader a brief description of a machine for making pins, invented by an American. It is highly ingenious in point of contrivance, and, in respect to its economical principles, will furnish a strong and interesting contrast with the manufacture of pins by the human hand. In this machine a coil of brass wire is placed on an axis; one end of this wire is drawn by a pair of rollers through a small hole in a plate of steel, and is held there by a forceps. As soon as the machine is put in action, -
1. The forceps draws the wire on to a distance equal in length to one pin: a cutting edge of steel then descends close to the hole through which the wire entered, and severs the piece drawn out.
2. The forceps holding the piece thus separated moves on, till it brings the wire to the centre of the chuck of a small lathe, which opens to receive it. Whilst the forceps is returning to fetch another piece of wire, the lathe revolves rapidly, and grinds the projecting end of the wire upon a steel mill, which advances towards it.
3. After this first or coarse pointing, the lathe stops, and another forceps takes hold of the half-pointed pin, (which is instantly released by the opening of the chuck), and conveys it to a similar chuck of an adjacent lathe, which receives it, and finishes the pointing on a finer steel mill.
4. This mill again stops, and another forceps removes the pointed pin into a pair of strong steel clams, having a small groove in them by which they hold the pin very firmly. A part of this groove, which terminates at that edge of the steel clams which is intended to form the head of the pin, is made conical. A small round steel punch is now driven forcibly against the end of the wire thus clamped, and the head of the pin is partially formed by compressing the wire into the conical cavity.