If the whole Engine had been completed it would have had six orders of differences, each of twenty places of figures, whilst the three first columns would each have had half a dozen additional figures.
This is the simplest explanation of that portion of the Difference Engine No. 1, at the Exhibition of 1862. There are, however, certain modifications in this fragment which render its exhibition more instructive, and which even give a mechanical insight into those higher powers with which I had endowed it in its complete state.
As a matter of convenience in exhibiting it, there is an arrangement by which the three upper figures of the second difference are transformed into a small engine which counts the natural numbers.
By this means it can be set to compute any Table whose second difference is constant and less than 1000, whilst at the same time it thus shows the position in the Table of each tabular number.
In the existing portion there are three bells; they can be respectively ordered to ring when the Table, its first difference {66} and its second difference, pass from positive to negative. Several weeks after the machine had been placed in my drawing-room, a friend came by appointment to test its power of calculating Tables. After the Engine had computed several Tables, I remarked that it was evidently finding the root of a quadratic equation; I therefore set the bells to watch it. After some time the proper bell sounded twice, indicating, and giving the two positive roots to be 28 and 30. The Table thus calculated related to the barometer and really involved a quadratic equation, although its maker had not previously observed it. I afterwards set the Engine to tabulate a formula containing impossible roots, and of course the other bell warned me when it had attained those roots. I had never before used these bells, simply because I did not think the power it thus possessed to be of any practical utility.
Again, the lowest cages of the Table, and of the first difference, have been made use of for the purpose of illustrating three important faculties of the finished engine.
- 1st. The portion exhibited can calculate any Table whose third difference is constant and less than 10.
- 2nd. It can be used to show how much more rapidly astronomical Tables can be calculated in an engine in which there is no constant difference.
- 3rd. It can be employed to illustrate those singular laws which might continue to be produced through ages, and yet after an enormous interval of time change into other different laws; each again to exist for ages, and then to be superseded by new laws. These views were first proposed in the “Ninth Bridgewater Treatise.”
〈CURIOUS QUESTIONS.〉
Amongst the various questions which have been asked respecting the Difference Engine, I will mention a few of the most remarkable:—One gentleman addressed me thus: {67} “Pray, Mr. Babbage, can you explain to me in two words what is the principle of this machine?” Had the querist possessed a moderate acquaintance with mathematics I might in four words have conveyed to him the required information by answering, “The method of differences.” The question might indeed have been answered with six characters thus—
Δ7 ux = 0.