[16]This discovery has been more justly appreciated by scientific men abroad. It was, almost immediately after its publication, adopted as the topic of lectures, in an institution on the Continent for the instruction of Civil Engineers.
Another of the uses which the slightest attention to the details of this notation irresistibly forces upon our notice, is to exhibit, in the form of a connected plan or map, the organization of an extensive factory, or any great public institution, in which a vast number of individuals are employed, and their duties regulated (as they generally are or ought to be) by a consistent and well-digested system. The mechanical notation is admirably adapted, not only to express such an organized connexion of human agents, but even to suggest the improvements of which such organization is susceptible—to betray its weak and defective points, and to disclose, at a glance, the origin of any fault which may, from time to time, be observed in the working of the system. Our limits, however, preclude us from pursuing this interesting topic to the extent which its importance would justify. We shall be satisfied if the hints here thrown out should direct to the subject the attention of those who, being most interested in such an enquiry, are likely to prosecute it with greatest success.
One of the consequences which has arisen in the prosecution of the invention of the calculating machinery, has been the discovery of a multitude of mechanical contrivances, which have been elicited by the exigencies of the undertaking, and which are as novel in their nature as the purposes were novel which they were designed to attain. In some cases several different contrivances were devised for the attainment of the same end; and that among them which was best suited for the purpose was finally selected: the rejected expedients—those overflowings or waste of the invention—were not, however, always found useless. Like the waste in various manufactures, they were soon converted to purposes of utility. These rejected contrivances have found their way, in many cases, into the mills of our manufacturers; and we now find them busily effecting purposes, far different from any which the inventor dreamed of, in the spinning-frames of Manchester.[17]
[17]An eminent and wealthy retired manufacturer at Manchester assured us, that on the occasion of a visit to London, when he was favoured with a view of the calculating machinery, he found in it mechanical contrivances, which he subsequently introduced with the greatest advantage into his own spinning-machinery.
Another department of mechanical art, which has been enriched by this invention, has been that of tools. The great variety of new forms which it was necessary to produce, created the necessity of contriving and constructing a vast number of novel and most valuable tools, by which, with the aid of the lathe, and that alone, the required forms could be given to the different parts of the machinery with all the requisite accuracy.
The idea of calculation by mechanism is not new. Arithmetical instruments, such as the calculating boards of the ancients, on which they made their computations by the aid of counters—the Abacus, an instrument for computing by the aid of balls sliding upon parallel rods—the method of calculation invented by Baron Napier, called by him Rhabdology, and since called Napier's bones—the Swan Pan of the Chinese—and other similar contrivances, among which more particularly may be mentioned the Sliding Rule, of so much use in practical calculations to modern engineers, will occur to every reader: these may more properly be called arithmetical instruments, partaking more or less of a mechanical character. But the earliest piece of mechanism to which the name of a 'calculating machine' can fairly be given, appears to have been a machine invented by the celebrated Pascal. This philosopher and mathematician, at a very early age, being engaged with his father, who held an official situation in Upper Normandy, the duties of which required frequent numerical calculations, contrived a piece of mechanism to facilitate the performance of them. This mechanism consisted of a series of wheels, carrying cylindrical barrels, on which were engraved the ten arithmetical characters, in a manner not very dissimilar to that already described. The wheel which expressed each order of units was so connected with the wheel which expressed the superior order, that when the former passed from 9 to 0, the latter was necessarily advanced one figure; and thus the process of carrying was executed by mechanism: when one number was to be added to another by this machine, the addition of each figure to the other was performed by the hand; when it was required to add more than two numbers, the additions were performed in the same manner successively; the second was added to the first, the third to their sum, and so on.
Subtraction was reduced to addition by the method of arithmetical complements; multiplication was performed by a succession of additions; and division by a succession of subtractions. In all cases, however, the operations were executed from wheel to wheel by the hand.[18]
[18]See a description of this machine by Diderot, in the Encyc. Method.; also in the works of Pascal, tom. IV., p. 7; Paris, 1819.
This mechanism, which was invented about the year 1650, does not appear ever to have been brought into any practical use; and seems to have speedily found its appropriate place in a museum of curiosities. It was capable of performing only particular arithmetical operations, and these subject to all the chances of error in manipulation; attended also with little more expedition (if so much), as would be attained by the pen of an expert computer.
This attempt of Pascal was followed by various others, with very little improvement, and with no additional success. Polenus, a learned and ingenious Italian, invented a machine by which multiplication was performed, but which does not appear to have afforded any material facilities, nor any more security against error than the common process of the pen. A similar attempt was made by Sir Samuel Moreland, who is described as having transferred to wheel-work the figures of Napier's bones, and as having made some additions to the machine of Pascal.[19]