To express angular magnitude, and the various relations of linear magnitude with which it is connected, involves the consideration of a vast variety of Geometrical and Trigonometrical tables; such as tables of the natural sines, co-sines, tangents, secants, co-tangents, &c. &c.; tables of arcs and angles in terms of the radius; tables for the immediate solution of various cases of triangles, &c. Volumes without number of such tables have been from time to time computed and published. It is not sufficient, however, for the purposes of computation to tabulate these immediate trigonometrical functions. Their squares[4] and higher powers, their square roots, and other roots, occur so frequently, that it has been found expedient to compute tables for them, as well as for the same functions of abstract numbers.
[4]The squares of the sines of angles are extensively used in the calculations connected with the theory of the tides. Not aware that tables of these squares existed, Bouvard, who calculated the tides for Laplace, underwent the labour of calculating the square of each individual sine in every case in which it occurred.
The measurement of linear, superficial, and solid magnitudes, in the various forms and modifications in which they are required in the arts, demands another extensive catalogue of numerical tables. The surveyor, the architect, the builder, the carpenter, the miner, the ganger, the naval architect, the engineer, civil and military, all require the aid of peculiar numerical tables, and such have been published in all countries.
The increased expedition and accuracy which was introduced into the art of computation by the invention of Logarithms, greatly enlarged the number of tables previously necessary. To apply the logarithmic method, it was not merely necessary to place in the hands of the computist extensive tables of the logarithms of the natural numbers, but likewise to supply him with tables in which he might find already calculated the logarithms of those arithmetical, trigonometrical, and geometrical functions of numbers, which he has most frequent occasion to use. It would be a circuitous process, when the logarithm of a sine or co-sine of an angle is required, to refer, first to the table of sines, or co-sines, and thence to the table of the logarithms of natural numbers. It was therefore found expedient to compute distinct tables of the logarithms of the sines, co-sines, tangents, &c., as well as of various other functions frequently required, such as sums, differences, &c.
Great as is the extent of the tables we have just enumerated, they bear a very insignificant proportion to those which remain to be mentioned. The above are, for the most part, general in their nature, not belonging particularly to any science or art. There is a much greater variety of tables, whose importance is no way inferior, which are, however, of a more special nature: Such are, for example, tables of interest, discount, and exchange, tables of annuities, and other tables necessary in life insurances; tables of rates of various kinds necessary in general commerce. But the science in which, above all others, the most extensive and accurate tables are indispensable, is Astronomy; with the improvement and perfection of which is inseparably connected that of the kindred art of Navigation. We scarcely dare hope to convey to the general reader any thing approaching to an adequate notion of the multiplicity and complexity of the tables necessary for the purposes of the astronomer and navigator. We feel, nevertheless, that the truly national importance which must attach to any perfect and easy means of producing those tables cannot be at all estimated, unless we state some of the previous calculations necessary in order to enable the mariner to determine, with the requisite certainty and precision, the place of his ship.
In a word, then, all the purely arithmetical, trigonometrical, and logarithmic tables already mentioned, are necessary, either immediately or remotely, for this purpose. But in addition to these, a great number of tables, exclusively astronomical, are likewise indispensable. The predictions of the astronomer, with respect to the positions and motions of the bodies of the firmament, are the means, and the only means, which enable the mariner to prosecute his art. By these he is enabled to discover the distance of his ship from the Line, and the extent of his departure from the meridian of Greenwich, or from any other meridian to which the astronomical predictions refer. The more numerous, minute, and accurate these predictions can be made, the greater will be the facilities which can be furnished to the mariner. But the computation of those tables, in which the future position of celestial objects are registered, depend themselves upon an infinite variety of other tables which never reach the hands of the mariner. It cannot be said that there is any table whatever, necessary for the astronomer, which is unnecessary for the navigator.
The purposes of the marine of a country whose interests are so inseparably connected as ours are with the improvement of the art of navigation, would be very inadequately fulfilled, if our navigators were merely supplied with the means of determining by Nautical Astronomy the position of a ship at sea. It has been well observed by the Committee of the Astronomical Society, to whom the recent improvement of the Nautical Almanac was confided, that it is not by those means merely by which the seaman is enabled to determine the position of his vessel at sea, that the full intent and purpose of what is usually called Nautical Astronomy are answered. This object is merely a part of that comprehensive and important subject; and might be attained by a very cheap publication, and without the aid of expensive instruments. A not less important and much more difficult part of nautical science has for its object to determine the precise position of various interesting and important points on the surface of the earth,—such as remarkable headlands, ports, and islands; together with the general trending of the coast between well-known harbours. It is not necessary to point out here how important such knowledge is to the mariner. This knowledge, which may be called Nautical Geography, cannot be obtained by the methods of observation used on board ship, but requires much more delicate and accurate instruments, firmly placed upon the solid ground, besides all the astronomical aid which can be afforded by the best tables, arranged in the most convenient form for immediate use. This was Dr Maskelyne's view of the subject, and his opinion has been confirmed by the repeated wants and demands of those distinguished navigators who have been employed in several recent scientific expeditions.[5]
[5]Report of the Committee of the Astronomical Society prefixed to the Nautical Almanac for 1834.
Among the tables directly necessary for navigation, are those which predict the position of the centre of the sun from hour to hour. These tables include the sun's right ascension and declination, daily, at noon, with the hourly change in these quantities. They also include the equation of time, together with its hourly variation.
Tables of the moon's place for every hour, are likewise necessary, together with the change of declination for every ten minutes. The lunar method of determining the longitude depends upon tables containing the predicted distances of the moon from the sun, the principal planets, and from certain conspicuous fixed stars; which distances being observed by the mariner, he is enabled thence to discover the time at the meridian from which the longitude is measured; and, by comparing that time with the time known or discoverable in his actual situation, he infers his longitude. But not only does the prediction of the position of the moon, with respect to these celestial objects, require a vast number of numerical tables, but likewise the observations necessary to be made by the mariner, in order to determine the lunar distances, also require several tables. To predict the exact position of any fixed star, requires not less than ten numerical tables peculiar to that star; and if the mariner be furnished (as is actually the case) with tables of the predicted distances of the moon from one hundred such stars, such predictions must require not less than a thousand numerical tables. Regarding the range of the moon through the firmament, however, it will readily be conceived that a hundred stars form but a scanty supply; especially when it is considered that an accurate method of determining the longitude, consists in observing the extinction of a star by the dark edge of the moon. Within the limits of the lunar orbit there are not less than one thousand stars, which are so situated as to be in the moon's path, and therefore to exhibit, at some period or other, those desirable occultations. These stars are also of such magnitudes, that their occultations may be distinctly observed from the deck, even when subject to all the unsteadiness produced by an agitated sea. To predict the occultations of such stars, would require not less than ten thousand tables. The stars from which lunar distances might be taken are still more numerous; and we may safely pronounce, that, great as has been the improvement effected recently in our Nautical Almanac, it does not yet furnish more than a small fraction of that aid to navigation (in the large sense of that term), which, with greater facility, expedition, and economy in the calculation and printing of tables, it might be made to supply.