It is quite apparent that this remarkable coincidence of error must have arisen from the various tables being copied successively one from another. The earliest work in which they appeared was Vlacq's Logarithms, (folio, Gouda, 1628); and from it, doubtless, those which immediately succeeded it in point of time were copied; from which the same errors were subsequently transcribed into all the other, including the Chinese logarithms.

The most certain and effectual check upon errors which arise in the process of computation, is to cause the same computations to be made by separate and independent computers; and this check is rendered still more decisive if they make their computations by different methods. It is, nevertheless, a remarkable fact, that several computers, working separately and independently, do frequently commit precisely the same error; so that falsehood in this case assumes that character of consistency, which is regarded as the exclusive attribute of truth. Instances of this are familiar to most persons who have had the management of the computation of tables. We have reason to know, that M. Prony experienced it on many occasions in the management of the great French tables, when he found three, and even a greater number of computers, working separately and independently, to return him the same numerical result, and that result wrong. Mr Stratford, the conductor of the Nautical Almanac, to whose talents and zeal that work owes the execution of its recent improvements, has more than once observed a similar occurrence. But one of the most signal examples of this kind, of which we are aware, is related by Mr Baily. The catalogue of stars published by the Astronomical Society was computed by two separate and independent persons, and was afterwards compared and examined with great care and attention by Mr Stratford. On examining this catalogue, and recalculating a portion of it, Mr Baily discovered an error in the case of the star, χ Cephei. Its right ascension was calculated wrongly, and yet consistently, by two computers working separately. Their numerical results agreed precisely in every figure; and Mr Stratford, on examining the catalogue, failed to detect the error. Mr Baily having reason, from some discordancy which he observed, to suspect an error, recomputed the place of the star with a view to discover it; and he himself, in the first instance, obtained precisely the same erroneous numerical result. It was only on going over the operation a second time that he accidentally discovered that he had inadvertently committed the same error.[10]

[10]Memoirs Ast. Soc. vol. iv., p. 290.

It appears, therefore, that the coincidence of different tables, even when it is certain that they could not have been copied one from another, but must have been computed independently, is not a decisive test of their correctness, neither is it possible to ensure accuracy by the device of separate and independent computation.

Besides the errors incidental to the process of computation, there are further liabilities in the process of transcribing the final results of each calculation into the fair copy of the table designed for the printer. The next source of error lies with the compositor, in transferring this copy into type. But the liabilities to error do not stop even here; for it frequently happens, that after the press has been fully corrected, errors will be produced in the process of printing. A remarkable instance of this occurs in one of the six errors detected in so many different tables already mentioned. In one of these cases, the last five figures of two successive numbers of a logarithmic table were the following:—

35875
10436.

Now, both of these are erroneous; the figure 8 in the first line should be 4, and the figure 4 in the second should be 8. It is evident that the types, as first composed, were correct; but in the course of printing, the two types 4 and 8 being loose, adhered to the inking-balls, and were drawn out: the pressmen in replacing them transposed them, putting the 8 above and the 4 below, instead of vice versa. It would be a curious enquiry, were it possible to obtain all the copies of the original edition of Vlacq's Logarithms, published at Gouda in 1628, from which this error appears to have been copied in all the subsequent tables, to ascertain whether it extends through the entire edition. It would probably, nay almost certainly, be discovered that some of the copies of that edition are correct in this number, while others are incorrect; the former having been worked off before the transposition of the types.

It is a circumstance worthy of notice, that this error in Vlacq's tables has produced a corresponding error in a variety of other tables deduced from them, in which nevertheless the erroneous figures in Vlacq are omitted. In no less than sixteen sets of tables published at various times since the publication of Vlacq, in which the logarithms extend only to seven places of figures, the error just mentioned in the eighth place in Vlacq causes a corresponding error in the seventh place. When the last three figures are omitted in the first of the above numbers, the seventh figure should be 5, inasmuch as the first of the omitted figures is under 5: the erroneous insertion, however, of the figure 8 in Vlacq has caused the figure 6 to be substituted for 5 in the various tables just alluded to. For the same reason, the erroneous occurrence of 4 in the second number has caused the adoption of a 0 instead of a 1 in the seventh place in the other tables. The only tables in which this error does not occur are those of Vega, the more recent editions of Callet, and the still later Logarithms of Mr Babbage.

The Opus Palatinum, a work published in 1596, containing an extensive collection of trigonometrical tables, affords a remarkable instance of a tabular error; which, as it is not generally known, it may not be uninteresting to mention here. After that work had been for several years in circulation in every part of Europe, it was discovered that the commencement of the table of co-tangents and co-secants was vitiated by an error of considerable magnitude. In the first co-tangent the last nine places of figures were incorrect; but from the manner in which the numbers of the table were computed, the error was gradually, though slowly, diminished, until at length it became extinguished in the eighty-sixth page. After the detection of this extensive error, Pitiscus undertook the recomputation of the eighty-six erroneous pages. His corrected calculation was printed, and the erroneous part of the remaining copies of the Opus Palatinum was cancelled. But as the corrected table of Pitiscus was not published until 1607,—thirteen years after the original work,—the erroneous part of the volume was cancelled in comparatively few copies, and consequently correct copies of the work are now exceedingly rare. Thus, in the collection of tables published by M. Schulze,[11] the whole of the erroneous part of the Opus Palatinum has been adopted; he having used the copy of that work which exists in the library of the Academy of Berlin, and which is one of those copies in which the incorrect part was not cancelled. The corrected copies of this work may be very easily distinguished at present from the erroneous ones: it happened that the former were printed with a very bad and worn-out type, and upon paper of a quality inferior to that of the original work. On comparing the first eighty-six pages of the volume with the succeeding ones, they are, therefore, immediately distinguishable in the corrected copies. Besides this test, there is another, which it may not be uninteresting to point out:—At the bottom of page 7 in the corrected copies, there is an error in the position of the words basis and hypothenusa, their places being interchanged. In the original uncorrected work this error does not exist.

[11]Recueil des Tables Logarithmiques et Trigonometriques. Par J. C. Schulze. 2 vols. Berlin: 1778.